Securing Biomechanical Data Quality: A Comprehensive Evaluation of On-Board Accelerometers for Shock and Vibration Analysis

(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibrat...

Full description

Saved in:
Bibliographic Details
Main Authors: Corentin Bosio, Christophe Sauret, Patricia Thoreux, Delphine Chadefaux
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4569
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(1) On-board accelerometers are increasingly employed in real-world biomechanics to monitor vibrations and shocks. This study assesses the accuracy, repeatability, and variability of three commercially available inertial measurement units (IMUs)—Xsens, Blue Trident, and Shimmer 3—in measuring vibration and shock parameters relevant to human motion analysis. (2) A controlled laboratory setup utilizing an electrodynamic shaker was employed to generate sine waves at varying frequencies and amplitudes, as well as shock profiles with defined peak accelerations and durations. (3) The results showed that Blue Trident demonstrated the highest accuracy in shock amplitude and timing, with relative errors below 6%, while Xsens provided stable measurements for low-frequency vibrations. In contrast, Shimmer 3 exhibited considerable variability in signal quality. (4) These findings offer critical insights into sensor selection based on specific application needs, ensuring optimal accuracy and reliability in dynamic measurement environments. This study lays the groundwork for improved IMU application in biomechanical research and practical deployments. Future research should continue to investigate sensor performance, particularly in angular motion contexts, to further enhance motion analysis capabilities.
ISSN:1424-8220