A novel 3D-printed electrochemical cell for operando synchrotron experiments
Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limit...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | Next Energy |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2949821X25000420 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Electrochemical processes are often accompanied by significant transformations at the electrode-electrolyte interface, such as the formation of a solid electrolyte interphase or surface reconstruction. Studying these dynamic changes requires operando characterization techniques to overcome the limitations of ex-situ methods. Here, we present a novel, versatile electrochemical cell optimized for operando synchrotron X-ray studies of the lithium-mediated nitrogen reduction reaction. The cell integrates a single-crystal working electrode with a gas diffusion counter electrode, enabling enhanced faradaic efficiencies (FEs) and operando measurements under conditions that closely resemble scalable flow systems. The cell design improves N₂ availability and suppresses undesirable counter electrode reactions through the hydrogen oxidation reaction, achieving FEs of up to 37% for ammonia production. Fabrication by 3D-printing polyether ether ketone allows for complex electrolyte flow geometries while maintaining minimal X-ray background interference, critical for X-ray-based techniques. The combination of single-crystal electrodes and optimized flow conditions offers a promising platform for investigating fundamental electrochemical processes under realistic and scalable conditions. |
|---|---|
| ISSN: | 2949-821X |