Multiple positive solutions for a nonlocal problem with fast increasing weight and critical exponent

Abstract In this paper, we are concerned with the following nonlocal problem: − ( a − ϵ ∫ R 3 K ( x ) | ∇ u | 2 d x ) div ( K ( x ) ∇ u ) = λ K ( x ) f ( x ) | u | q − 2 u + K ( x ) | u | 4 u , x ∈ R 3 , $$ -\left (a-\epsilon \displaystyle \int _{\mathbb{R}^{3}} K(x)| \nabla u|^{2}dx\right )\text{di...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaotao Qian, Zhigao Shi
Format: Article
Language:English
Published: SpringerOpen 2025-01-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-024-01986-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In this paper, we are concerned with the following nonlocal problem: − ( a − ϵ ∫ R 3 K ( x ) | ∇ u | 2 d x ) div ( K ( x ) ∇ u ) = λ K ( x ) f ( x ) | u | q − 2 u + K ( x ) | u | 4 u , x ∈ R 3 , $$ -\left (a-\epsilon \displaystyle \int _{\mathbb{R}^{3}} K(x)| \nabla u|^{2}dx\right )\text{div}(K(x)\nabla u)=\lambda K(x)f(x)|u|^{q-2}u+K(x)|u|^{4}u, \quad x\in \mathbb{R}^{3}, $$ where a , λ > 0 $a, \lambda >0$ , 1 < q < 2 $1< q<2$ , K ( x ) = exp ( | x | α / 4 ) $K(x)=\exp ({|x|^{\alpha}/4})$ with α ≥ 2 $\alpha \geq 2$ , ϵ > 0 $\epsilon >0$ is small enough, and f ( x ) ≥ 0 $f(x)\ge 0$ satisfies some integrability condition. By using the Ekeland variational principle and the concentration compactness principle, we establish the existence of two positive solutions for the problem and prove that at least one of them is a positive ground state solution.
ISSN:1687-2770