Diffractometer for element-specific analysis on local structures using a combination of X-ray fluorescence holography and anomalous X-ray scattering

To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution usin...

Full description

Saved in:
Bibliographic Details
Main Authors: Hiroo Tajiri, Shinji Kohara, Koji Kimura, Sekhar Halubai, Haruto Morimoto, Naohisa Happo, Jens R. Stellhorn, Yohei Onodera, Xvsheng Qiao, Daisuke Urushihara, Peidong Hu, Toru Wakihara, Toyohiko Kinoshita, Koichi Hayashi
Format: Article
Language:English
Published: International Union of Crystallography 2025-01-01
Series:Journal of Synchrotron Radiation
Subjects:
Online Access:https://journals.iucr.org/paper?S1600577524011366
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To tackle disorder in crystals and short- and intermediate-range order in amorphous materials, such as glass, we developed a carry-in diffractometer to utilise X-ray fluorescence holography (XFH) and anomalous X-ray scattering (AXS), facilitating element-specific analyses with atomic resolution using the wavelength tunability of a synchrotron X-ray source. Our diffractometer unifies XFH and AXS configurations to determine the crystal orientation via diffractometry. In particular, XFH was realised even for a crystal with blurred emission lines by a standing wave in a hologram, and high-throughput AXS with sufficient count statistics and energy resolution was achieved using three multi-array detectors with crystal analysers. These features increase tractable targets by XFH and AXS, which have novel functionalities.
ISSN:1600-5775