Buckling analysis of FML cylindrical shells under combined axial and torsional loading
Generally, in-served cylindrical shells buckling usually takes place not merely under one of the basic loads, i.e., axial compression, lateral pressure, and torsion, but under a combination of them. The buckling behavior of fiber-metal laminate (FML) cylindrical shells under combined axial and torsi...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Semnan University
2020-11-01
|
| Series: | Mechanics of Advanced Composite Structures |
| Subjects: | |
| Online Access: | https://macs.semnan.ac.ir/article_4306_c3c4d72fe8e68b19f410f37f917bb0e1.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Generally, in-served cylindrical shells buckling usually takes place not merely under one of the basic loads, i.e., axial compression, lateral pressure, and torsion, but under a combination of them. The buckling behavior of fiber-metal laminate (FML) cylindrical shells under combined axial and torsional loading is studied in this paper. The Kirchhoff Love-type assumption is employed to study the axial buckling load. Then, an extended finite element (FE) model is presented and results are compared. A number of consequential parameters such as lay-up arrangement, metal type and metal volume fraction are employed and enhancement of buckling behavior of the shell is also studied. Finally, the interaction of axial /torsional loading is analyzed and discussed. The results show that as the metal volume fraction rises to 15%, the endurable buckling load increases almost 43% more than the state in which there is no metal layer. The numerical results show that increasing the metal volume percentage leads to a decrease in buckling performance of the structure under axial loading. |
|---|---|
| ISSN: | 2423-4826 2423-7043 |