Bioconversion of bread waste into high-quality proteins and biopolymers by fermentation of archaea Haloferax mediterranei

The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyva...

Full description

Saved in:
Bibliographic Details
Main Authors: Razan Unis, Rima Gnaim, Mrinal Kashyap, Olga Shamis, Nabeel Gnayem, Michael Gozin, Alexander Liberzon, Jallal Gnaim, Alexander Golberg
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-12-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2024.1491333/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The valorization of bread waste into high-quality protein and biopolymers using the halophilic microorganism Haloferax mediterranei presents a sustainable approach to food waste management and resource optimization. This study successfully coproduced protein and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymer with a biomass content of 8.0 ± 0.1 g L−1 and a productivity of 11.1 mg L−1 h−1. The fermentation process employed 3.0% w/v of enzymatically hydrolyzed bread waste. The amino acid profile of the cell biomass revealed a total content of 358 g kg−1 of biomass dry weight (DW), including 147 g kg−1 DW of essential amino acids. The protein quality, assessed through in-vitro enzyme digestion, indicated a high-quality protein with a digestibility value of 0.91 and a protein digestibility-corrected amino acid score (PDCAAS) of 0.78. The PHBV biopolymer component (36.0 ± 6.3% w/w) consisted of a copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate in a 91:9 mol% ratio. This bioconversion process not only mitigates food waste but also generates valuable biomaterials.
ISSN:1664-302X