Method to generate cyber deception traffic based on adversarial sample

In order to prevent attacker traffic classification attacks,a method for generating deception traffic based on adversarial samples from the perspective of the defender was proposed.By adding perturbation to the normal network traffic,an adversarial sample of deception traffic was formed,so that an a...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongjin HU, Yuanbo GUO, Jun MA, Han ZHANG, Xiuqing MAO
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2020-09-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2020166/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to prevent attacker traffic classification attacks,a method for generating deception traffic based on adversarial samples from the perspective of the defender was proposed.By adding perturbation to the normal network traffic,an adversarial sample of deception traffic was formed,so that an attacker could make a misclassification when implementing a traffic analysis attack based on a deep learning model,achieving deception effect by causing the attacker to consume time and energy.Several different methods for crafting perturbation were used to generate adversarial samples of deception traffic,and the LeNet-5 deep convolutional neural network was selected as a traffic classification model for attackers to deceive.The effectiveness of the proposed method is verified by experiments,which provides a new method for network traffic obfuscation and deception.
ISSN:1000-436X