Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit
The purpose of this note is to review certain recent results concerning the pseudospectra and the eigenvalues asymptotics of non-selfadjoint semiclassical pseudo-differential operators subject to small random perturbations.
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-12-01
|
| Series: | Frontiers in Applied Mathematics and Statistics |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fams.2024.1508973/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846145120590626816 |
|---|---|
| author | Martin Vogel |
| author_facet | Martin Vogel |
| author_sort | Martin Vogel |
| collection | DOAJ |
| description | The purpose of this note is to review certain recent results concerning the pseudospectra and the eigenvalues asymptotics of non-selfadjoint semiclassical pseudo-differential operators subject to small random perturbations. |
| format | Article |
| id | doaj-art-24c30d474f564b4fb8d60efe7ed94ff8 |
| institution | Kabale University |
| issn | 2297-4687 |
| language | English |
| publishDate | 2024-12-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| series | Frontiers in Applied Mathematics and Statistics |
| spelling | doaj-art-24c30d474f564b4fb8d60efe7ed94ff82024-12-02T06:23:20ZengFrontiers Media S.A.Frontiers in Applied Mathematics and Statistics2297-46872024-12-011010.3389/fams.2024.15089731508973Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limitMartin VogelThe purpose of this note is to review certain recent results concerning the pseudospectra and the eigenvalues asymptotics of non-selfadjoint semiclassical pseudo-differential operators subject to small random perturbations.https://www.frontiersin.org/articles/10.3389/fams.2024.1508973/fullsemiclassical analysisnon-selfadjoint operatorsrandom matrixspectral theorypartial differential equation (PDE) |
| spellingShingle | Martin Vogel Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit Frontiers in Applied Mathematics and Statistics semiclassical analysis non-selfadjoint operators random matrix spectral theory partial differential equation (PDE) |
| title | Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit |
| title_full | Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit |
| title_fullStr | Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit |
| title_full_unstemmed | Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit |
| title_short | Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit |
| title_sort | pseudospectra and eigenvalue asymptotics for disordered non selfadjoint operators in the semiclassical limit |
| topic | semiclassical analysis non-selfadjoint operators random matrix spectral theory partial differential equation (PDE) |
| url | https://www.frontiersin.org/articles/10.3389/fams.2024.1508973/full |
| work_keys_str_mv | AT martinvogel pseudospectraandeigenvalueasymptoticsfordisorderednonselfadjointoperatorsinthesemiclassicallimit |