Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory
This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Journal on Exploratory Solid-State Computational Devices and Circuits |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10714384/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate (MAC) operations. Specialized peripheral circuits were designed for the current-scheme CiM architecture. More importantly, strategies of accuracy improvement were innovatively proposed as follows: 1) mapping most significant bit (MSB) to the far side of the MRAM array and 2) output linear transformation based on the reference columns. Circuit-level simulation verified the functionality and performance improvement of the CiM macro based on the MNIST and CIFAR-10 datasets, realizing a 3% and 5% accuracy loss compared with the benchmark, respectively. The 640-GOPS (8 bit) throughput, 34.6-TOPS/mm2 area compactness, and 83.3-TOPS/W energy efficiency demonstrate the advantages of STT-MRAM CiM in the coming AI era. |
---|---|
ISSN: | 2329-9231 |