FA-HRNet: A New Fusion Attention Approach for Vegetation Semantic Segmentation and Analysis
Semantic segmentation of vegetation in aerial remote sensing images is a critical aspect of vegetation mapping. Accurate vegetation segmentation effectively informs real-world production and construction activities. However, the presence of species heterogeneity, seasonal variations, and feature dis...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-11-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/16/22/4194 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Semantic segmentation of vegetation in aerial remote sensing images is a critical aspect of vegetation mapping. Accurate vegetation segmentation effectively informs real-world production and construction activities. However, the presence of species heterogeneity, seasonal variations, and feature disparities within remote sensing images poses significant challenges for vision tasks. Traditional machine learning-based methods often struggle to capture deep-level features for the segmentation. This work proposes a novel deep learning network named FA-HRNet that leverages the fusion of attention mechanism and a multi-branch network structure for vegetation detection and segmentation. Quantitative analysis from multiple datasets reveals that our method outperforms existing approaches, with improvements in MIoU and PA by 2.17% and 4.85%, respectively, compared with the baseline network. Our approach exhibits significant advantages over the other methods regarding cross-region and cross-scale capabilities, providing a reliable vegetation coverage ratio for ecological analysis. |
|---|---|
| ISSN: | 2072-4292 |