Hybrid Deep Neural Network-Based Generation Rescheduling for Congestion Mitigation in Spot Power Market

In the open-access power market environment, the continuously varying loading and accommodation of various bilateral and multilateral transactions, sometimes leads to congestion, which is not desirable. In a day ahead or spot power market, generation rescheduling (GR) is one of the most prominent te...

Full description

Saved in:
Bibliographic Details
Main Authors: Anjali Agrawal, Seema N. Pandey, Laxmi Srivastava, Pratima Walde, Saumya Singh, Baseem Khan, R. K. Saket
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9730881/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the open-access power market environment, the continuously varying loading and accommodation of various bilateral and multilateral transactions, sometimes leads to congestion, which is not desirable. In a day ahead or spot power market, generation rescheduling (GR) is one of the most prominent techniques to be adopted by the system operator (SO) to release congestion. In this paper, a novel hybrid Deep Neural Network (NN) is developed for projecting rescheduled generation dispatches at all the generators. The proposed hybrid Deep Neural Network is a cascaded combination of modified back-propagation (BP) algorithm based ANN as screening module and Deep NN as GR module. The screening module segregates the congested and non-congested loading scenarios resulting due to bilateral/multilateral transactions, efficiently and accurately. However, the GR module projects the re-scheduled active power dispatches at all the generating units at minimum congestion cost for all unseen congested loading scenarios instantly. The present approach provides a ready/instantaneous solution to manage congestion in a spot power market. During the training, the Root Mean Square Error (RMSE) is evaluated and minimized. The effectiveness of the proposed method has been demonstrated on the IEEE 30-bus system. The maximum error incurred during the testing phase is found 1.191% which is within the acceptable accuracy limits.
ISSN:2169-3536