Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assis...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-03-01
|
Series: | Results in Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2590123025000453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841545487634661376 |
---|---|
author | Zamira Sattinova Bakytzhan Assilbekov Animesh Pal Tassybek Bekenov Bidyut Baran Saha |
author_facet | Zamira Sattinova Bakytzhan Assilbekov Animesh Pal Tassybek Bekenov Bidyut Baran Saha |
author_sort | Zamira Sattinova |
collection | DOAJ |
description | This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assisted thermal energy systems. The transient melting behavior of PCM is numerically investigated in 2D planar geometries using the enthalpy-porosity model. A particular effect of fins, BeO nanoparticles, and a combination of both at different volume fractions on melting performance is analyzed. The thermal conductivity of PCM is enhanced by around 15 % for both liquid and solid phases at a 5 % volume fraction of BeO nanoparticles. Employment of 2, 4, and 6 fins is seen to improve melting time by 30.6 %, 44.4 %, and 52.8 %, respectively, as compared to a base case. Simulation results also have shown that adding 1 %, 3 %, and 5 % BeO nanoparticles by volume in the PCM reduced the melting time by 2.8 %, 7.2 %, and 12.2 %, respectively, relating to the base case. Adding 5 % BeO nanoparticles by volume in the PCM results in a melting time decrease of 38.9 %, 51.1 %, and 58.3 % taking pure PCM case as the reference, respectively, for 2, 4, and 6 finned cases. Analysis of simulation results revealed that the effect of fins on melting time at a 5 % volume fraction of BeO nanoparticles weakens as the fin number increases. Comparative analysis has shown that adding BeO nanoparticles demonstrates melting acceleration by 4.3 % compared to Al2O3 nanoparticles. |
format | Article |
id | doaj-art-20c7ff790c9a4d45ad1f28cc8a2dcce2 |
institution | Kabale University |
issn | 2590-1230 |
language | English |
publishDate | 2025-03-01 |
publisher | Elsevier |
record_format | Article |
series | Results in Engineering |
spelling | doaj-art-20c7ff790c9a4d45ad1f28cc8a2dcce22025-01-12T05:25:39ZengElsevierResults in Engineering2590-12302025-03-0125103957Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal finsZamira Sattinova0Bakytzhan Assilbekov1Animesh Pal2Tassybek Bekenov3Bidyut Baran Saha4L.N. Gumilyov Eurasian National University, Astana 010008, KazakhstanLaboratory of Computational Modeling and Information Technologies, Satbayev University, Almaty 050013, Kazakhstan; Corresponding authors.Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh; Corresponding authors.L.N. Gumilyov Eurasian National University, Astana 010008, KazakhstanInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Corresponding author at: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assisted thermal energy systems. The transient melting behavior of PCM is numerically investigated in 2D planar geometries using the enthalpy-porosity model. A particular effect of fins, BeO nanoparticles, and a combination of both at different volume fractions on melting performance is analyzed. The thermal conductivity of PCM is enhanced by around 15 % for both liquid and solid phases at a 5 % volume fraction of BeO nanoparticles. Employment of 2, 4, and 6 fins is seen to improve melting time by 30.6 %, 44.4 %, and 52.8 %, respectively, as compared to a base case. Simulation results also have shown that adding 1 %, 3 %, and 5 % BeO nanoparticles by volume in the PCM reduced the melting time by 2.8 %, 7.2 %, and 12.2 %, respectively, relating to the base case. Adding 5 % BeO nanoparticles by volume in the PCM results in a melting time decrease of 38.9 %, 51.1 %, and 58.3 % taking pure PCM case as the reference, respectively, for 2, 4, and 6 finned cases. Analysis of simulation results revealed that the effect of fins on melting time at a 5 % volume fraction of BeO nanoparticles weakens as the fin number increases. Comparative analysis has shown that adding BeO nanoparticles demonstrates melting acceleration by 4.3 % compared to Al2O3 nanoparticles.http://www.sciencedirect.com/science/article/pii/S2590123025000453Beryllium oxide nanoparticlesHigh-temperature PCMLatent heat thermal energy storageFinsMelting time reduction |
spellingShingle | Zamira Sattinova Bakytzhan Assilbekov Animesh Pal Tassybek Bekenov Bidyut Baran Saha Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins Results in Engineering Beryllium oxide nanoparticles High-temperature PCM Latent heat thermal energy storage Fins Melting time reduction |
title | Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins |
title_full | Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins |
title_fullStr | Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins |
title_full_unstemmed | Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins |
title_short | Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins |
title_sort | melting enhancement in vertical triplex tube latent heat thermal energy storage system using beo nanoparticles and internal fins |
topic | Beryllium oxide nanoparticles High-temperature PCM Latent heat thermal energy storage Fins Melting time reduction |
url | http://www.sciencedirect.com/science/article/pii/S2590123025000453 |
work_keys_str_mv | AT zamirasattinova meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins AT bakytzhanassilbekov meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins AT animeshpal meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins AT tassybekbekenov meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins AT bidyutbaransaha meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins |