Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins

This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assis...

Full description

Saved in:
Bibliographic Details
Main Authors: Zamira Sattinova, Bakytzhan Assilbekov, Animesh Pal, Tassybek Bekenov, Bidyut Baran Saha
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:Results in Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590123025000453
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841545487634661376
author Zamira Sattinova
Bakytzhan Assilbekov
Animesh Pal
Tassybek Bekenov
Bidyut Baran Saha
author_facet Zamira Sattinova
Bakytzhan Assilbekov
Animesh Pal
Tassybek Bekenov
Bidyut Baran Saha
author_sort Zamira Sattinova
collection DOAJ
description This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assisted thermal energy systems. The transient melting behavior of PCM is numerically investigated in 2D planar geometries using the enthalpy-porosity model. A particular effect of fins, BeO nanoparticles, and a combination of both at different volume fractions on melting performance is analyzed. The thermal conductivity of PCM is enhanced by around 15 % for both liquid and solid phases at a 5 % volume fraction of BeO nanoparticles. Employment of 2, 4, and 6 fins is seen to improve melting time by 30.6 %, 44.4 %, and 52.8 %, respectively, as compared to a base case. Simulation results also have shown that adding 1 %, 3 %, and 5 % BeO nanoparticles by volume in the PCM reduced the melting time by 2.8 %, 7.2 %, and 12.2 %, respectively, relating to the base case. Adding 5 % BeO nanoparticles by volume in the PCM results in a melting time decrease of 38.9 %, 51.1 %, and 58.3 % taking pure PCM case as the reference, respectively, for 2, 4, and 6 finned cases. Analysis of simulation results revealed that the effect of fins on melting time at a 5 % volume fraction of BeO nanoparticles weakens as the fin number increases. Comparative analysis has shown that adding BeO nanoparticles demonstrates melting acceleration by 4.3 % compared to Al2O3 nanoparticles.
format Article
id doaj-art-20c7ff790c9a4d45ad1f28cc8a2dcce2
institution Kabale University
issn 2590-1230
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series Results in Engineering
spelling doaj-art-20c7ff790c9a4d45ad1f28cc8a2dcce22025-01-12T05:25:39ZengElsevierResults in Engineering2590-12302025-03-0125103957Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal finsZamira Sattinova0Bakytzhan Assilbekov1Animesh Pal2Tassybek Bekenov3Bidyut Baran Saha4L.N. Gumilyov Eurasian National University, Astana 010008, KazakhstanLaboratory of Computational Modeling and Information Technologies, Satbayev University, Almaty 050013, Kazakhstan; Corresponding authors.Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh; Corresponding authors.L.N. Gumilyov Eurasian National University, Astana 010008, KazakhstanInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Corresponding author at: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.This study presents the application of internal fins and beryllium oxide (BeO) nanoparticles to accelerate the melting of lithium chloride as a phase change material (PCM) encapsulated in a latent heat thermal energy storage unit which is an intermediate element in a nuclear power plant's assisted thermal energy systems. The transient melting behavior of PCM is numerically investigated in 2D planar geometries using the enthalpy-porosity model. A particular effect of fins, BeO nanoparticles, and a combination of both at different volume fractions on melting performance is analyzed. The thermal conductivity of PCM is enhanced by around 15 % for both liquid and solid phases at a 5 % volume fraction of BeO nanoparticles. Employment of 2, 4, and 6 fins is seen to improve melting time by 30.6 %, 44.4 %, and 52.8 %, respectively, as compared to a base case. Simulation results also have shown that adding 1 %, 3 %, and 5 % BeO nanoparticles by volume in the PCM reduced the melting time by 2.8 %, 7.2 %, and 12.2 %, respectively, relating to the base case. Adding 5 % BeO nanoparticles by volume in the PCM results in a melting time decrease of 38.9 %, 51.1 %, and 58.3 % taking pure PCM case as the reference, respectively, for 2, 4, and 6 finned cases. Analysis of simulation results revealed that the effect of fins on melting time at a 5 % volume fraction of BeO nanoparticles weakens as the fin number increases. Comparative analysis has shown that adding BeO nanoparticles demonstrates melting acceleration by 4.3 % compared to Al2O3 nanoparticles.http://www.sciencedirect.com/science/article/pii/S2590123025000453Beryllium oxide nanoparticlesHigh-temperature PCMLatent heat thermal energy storageFinsMelting time reduction
spellingShingle Zamira Sattinova
Bakytzhan Assilbekov
Animesh Pal
Tassybek Bekenov
Bidyut Baran Saha
Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
Results in Engineering
Beryllium oxide nanoparticles
High-temperature PCM
Latent heat thermal energy storage
Fins
Melting time reduction
title Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
title_full Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
title_fullStr Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
title_full_unstemmed Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
title_short Melting enhancement in vertical triplex-tube latent heat thermal energy storage system using BeO nanoparticles and internal fins
title_sort melting enhancement in vertical triplex tube latent heat thermal energy storage system using beo nanoparticles and internal fins
topic Beryllium oxide nanoparticles
High-temperature PCM
Latent heat thermal energy storage
Fins
Melting time reduction
url http://www.sciencedirect.com/science/article/pii/S2590123025000453
work_keys_str_mv AT zamirasattinova meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins
AT bakytzhanassilbekov meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins
AT animeshpal meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins
AT tassybekbekenov meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins
AT bidyutbaransaha meltingenhancementinverticaltriplextubelatentheatthermalenergystoragesystemusingbeonanoparticlesandinternalfins