Liquid bidentate ligand for full ligand coverage towards efficient near-infrared perovskite quantum dot LEDs
Abstract Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2025-01-01
|
Series: | Light: Science & Applications |
Online Access: | https://doi.org/10.1038/s41377-024-01704-x |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Perovskite quantum dots (PQDs) show promise in light-emitting diodes (LEDs). However, near-infrared (NIR) LEDs employing PQDs exhibit inferior external quantum efficiency related to the PQD emitting in the visible range. One fundamental issue arises from the PQDs dynamic surface: the ligand loss and ions migration to the interfacial sites serve as quenching centers, resulting in trap-assisted recombination and carrier loss. In this work, we developed a chemical treatment strategy to eliminate the interface quenching sites and achieve high carrier utilization. We employ a bidentate and liquid agent (Formamidine thiocyanate, FASCN) with tight binding to suppress the ligand loss and the formation of interfacial quenching sites: the FASCN-treated films exhibit fourfold higher binding energy than the original oleate ligands. Furthermore, the short ligands (carbon chain <3) enable the treated films to show eightfold higher conductivity; and the liquid characteristics of FASCN avoid the use of high polar solvents and guarantee better passivation. The high conductivity ensures efficient charge transportation, enabling PQD-based NIR-LEDs to have a record-low voltage of 1.6 V at 776 nm. Furthermore, the champion EQE of the treated LEDs is ~23%: this is twofold higher than the control, and represents the highest among reported PQD-based NIR-LEDs. |
---|---|
ISSN: | 2047-7538 |