Structures and evolution of bifurcation diagrams for a multiparameter $p$-Laplacian Dirichlet problem

We study the multiparameter $p$-Laplacian Dirichlet problem \begin{equation*} \begin{cases} \left( \varphi _{p}(u^{\prime }(x))\right) ^{\prime }+\lambda (ku^{p-1}+\sum _{i=1}^{m}a_{i}u^{q_{i}})-\mu \sum _{j=1}^{n}b_{j}u^{r_{j}}=0,% \text{ }-1<x<1, \\ u(-1)=u(1)=0,% \end{cases} \end{equation*}...

Full description

Saved in:
Bibliographic Details
Main Authors: Tsung-Yi Hsieh, Shin-Hwa Wang
Format: Article
Language:English
Published: University of Szeged 2024-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11205
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the multiparameter $p$-Laplacian Dirichlet problem \begin{equation*} \begin{cases} \left( \varphi _{p}(u^{\prime }(x))\right) ^{\prime }+\lambda (ku^{p-1}+\sum _{i=1}^{m}a_{i}u^{q_{i}})-\mu \sum _{j=1}^{n}b_{j}u^{r_{j}}=0,% \text{ }-1<x<1, \\ u(-1)=u(1)=0,% \end{cases} \end{equation*} where $p>1,$ $\varphi _{p}(y)=\left \vert y\right \vert ^{p-2}y$, $\left( \varphi _{p}(u^{\prime })\right) ^{\prime }$ is the one-dimensional $p$-Laplacian, $\lambda >0$ and $\mu \geq 0$ are two bifurcation parameters. We assume that $k\geq 0,$ $0<p-1<q_{1}<q_{2}<\cdot \cdot \cdot <q_{m}<r_{1}<r_{2}<\cdot \cdot \cdot <r_{n},$ $m,n\geq 1,$ $a_{1}=1,$ $a_{i}>0$ for $i=1,2,\dots,m$ and $b_{1}=1,$ $b_{j}>0$ for $j=1,2,\dots,n$. We mainly prove that, on the $(\lambda ,\left \Vert u\right \Vert _{\infty })$-plane, the bifurcation diagram consists of a strictly decreasing curve for $\mu =0,$ and always consists of a $\subset $-shaped curve for fixed $\mu >0$. We then study the structures and evolution of the bifurcation diagrams with varying $\mu \geq 0$.
ISSN:1417-3875