Structures and evolution of bifurcation diagrams for a multiparameter $p$-Laplacian Dirichlet problem
We study the multiparameter $p$-Laplacian Dirichlet problem \begin{equation*} \begin{cases} \left( \varphi _{p}(u^{\prime }(x))\right) ^{\prime }+\lambda (ku^{p-1}+\sum _{i=1}^{m}a_{i}u^{q_{i}})-\mu \sum _{j=1}^{n}b_{j}u^{r_{j}}=0,% \text{ }-1<x<1, \\ u(-1)=u(1)=0,% \end{cases} \end{equation*}...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11205 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the multiparameter $p$-Laplacian Dirichlet problem
\begin{equation*}
\begin{cases}
\left( \varphi _{p}(u^{\prime }(x))\right) ^{\prime }+\lambda (ku^{p-1}+\sum
_{i=1}^{m}a_{i}u^{q_{i}})-\mu \sum _{j=1}^{n}b_{j}u^{r_{j}}=0,%
\text{ }-1<x<1, \\
u(-1)=u(1)=0,%
\end{cases}
\end{equation*}
where $p>1,$ $\varphi _{p}(y)=\left \vert y\right \vert ^{p-2}y$, $\left(
\varphi _{p}(u^{\prime })\right) ^{\prime }$ is the one-dimensional $p$-Laplacian, $\lambda >0$ and $\mu \geq 0$ are two bifurcation parameters. We assume that $k\geq 0,$ $0<p-1<q_{1}<q_{2}<\cdot \cdot \cdot <q_{m}<r_{1}<r_{2}<\cdot \cdot \cdot <r_{n},$ $m,n\geq 1,$ $a_{1}=1,$ $a_{i}>0$ for $i=1,2,\dots,m$ and $b_{1}=1,$ $b_{j}>0$ for $j=1,2,\dots,n$. We mainly prove that, on the $(\lambda ,\left \Vert u\right \Vert _{\infty })$-plane, the bifurcation diagram consists of a strictly decreasing curve for $\mu =0,$ and always consists of a $\subset $-shaped curve for fixed $\mu >0$. We then study the structures and evolution of the bifurcation diagrams with varying $\mu \geq 0$. |
---|---|
ISSN: | 1417-3875 |