Automatic etiological classification of stroke thrombus digital photographs using a deep learning model

BackgroundEtiological classification of ischemic stroke is fundamental for secondary prevention, but frequently results in undetermined cause. We aimed to develop a Deep Learning (DL)-based model for automatic etiological classification of ischemic stroke using digital images of thrombi retrieved by...

Full description

Saved in:
Bibliographic Details
Main Authors: Álvaro Lucero-Garófano, Alicia Aliena-Valero, Isabel Vielba-Gómez, Irene Escudero-Martínez, Lluís Morales-Caba, Fernando Aparici-Robles, Diana L. Tarruella Hernández, Gerardo Fortea, José I. Tembl, Juan B. Salom, José V. Manjón
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-01-01
Series:Frontiers in Neurology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fneur.2025.1534845/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533216250396672
author Álvaro Lucero-Garófano
Álvaro Lucero-Garófano
Alicia Aliena-Valero
Isabel Vielba-Gómez
Isabel Vielba-Gómez
Irene Escudero-Martínez
Irene Escudero-Martínez
Lluís Morales-Caba
Lluís Morales-Caba
Fernando Aparici-Robles
Fernando Aparici-Robles
Diana L. Tarruella Hernández
Diana L. Tarruella Hernández
Gerardo Fortea
Gerardo Fortea
José I. Tembl
José I. Tembl
Juan B. Salom
Juan B. Salom
José V. Manjón
author_facet Álvaro Lucero-Garófano
Álvaro Lucero-Garófano
Alicia Aliena-Valero
Isabel Vielba-Gómez
Isabel Vielba-Gómez
Irene Escudero-Martínez
Irene Escudero-Martínez
Lluís Morales-Caba
Lluís Morales-Caba
Fernando Aparici-Robles
Fernando Aparici-Robles
Diana L. Tarruella Hernández
Diana L. Tarruella Hernández
Gerardo Fortea
Gerardo Fortea
José I. Tembl
José I. Tembl
Juan B. Salom
Juan B. Salom
José V. Manjón
author_sort Álvaro Lucero-Garófano
collection DOAJ
description BackgroundEtiological classification of ischemic stroke is fundamental for secondary prevention, but frequently results in undetermined cause. We aimed to develop a Deep Learning (DL)-based model for automatic etiological classification of ischemic stroke using digital images of thrombi retrieved by mechanical thrombectomy.MethodsPatients with large vessel occlusion stroke subjected to mechanical thrombectomy between April 2016 and January 2023 at La Fe University and Polytechnic Hospital in Valencia were included. Thrombus digital images were obtained and clinical characteristics, including TOAST etiological classification as reference standard, were retrieved. Statistical analysis was performed to compare clinical characteristics between atherothrombotic and cardioembolic strokes. A DL method was designed based on two deep neural networks for: (1) image segmentation and (2) image classification including clinical characteristics. The metrics used were DICE coefficient for the segmentation network, and accuracy, precision, sensitivity, specificity and area under the curve (AUC) for the predictions of the classification network.ResultsA total of 166 patients (mean age 69 [SD, 13], 67 female) were included. TOAST classification was: 31 atherothrombotic, 87 cardioembolic, and 48 cryptogenic. The segmentation network achieved an average DICE coefficient of 0.96 [SD, 0.13]. The optimal fused imaging and clinical classification network had a 0.968 accuracy [95% CI, 0.935–0.994], and AUC of 0.947 [95% CI, 0.870–1]. Cryptogenic thrombi were classified as cardioembolic (96%) or atherothrombotic (4%).ConclusionTwo convolutional neural networks perform the automatic segmentation of thrombus images and, combined with selected clinical characteristics, their accurate and precise classification into atherothrombotic or cardioembolic etiology in patients with acute ischemic stroke.
format Article
id doaj-art-1f49365e44dc4770b0fb500df3b267b8
institution Kabale University
issn 1664-2295
language English
publishDate 2025-01-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neurology
spelling doaj-art-1f49365e44dc4770b0fb500df3b267b82025-01-17T05:10:43ZengFrontiers Media S.A.Frontiers in Neurology1664-22952025-01-011610.3389/fneur.2025.15348451534845Automatic etiological classification of stroke thrombus digital photographs using a deep learning modelÁlvaro Lucero-Garófano0Álvaro Lucero-Garófano1Alicia Aliena-Valero2Isabel Vielba-Gómez3Isabel Vielba-Gómez4Irene Escudero-Martínez5Irene Escudero-Martínez6Lluís Morales-Caba7Lluís Morales-Caba8Fernando Aparici-Robles9Fernando Aparici-Robles10Diana L. Tarruella Hernández11Diana L. Tarruella Hernández12Gerardo Fortea13Gerardo Fortea14José I. Tembl15José I. Tembl16Juan B. Salom17Juan B. Salom18José V. Manjón19Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainInstituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainServicio de Radiología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainUnidad de Ictus, Servicio de Neurología, Hospital Universitario y Politécnico La Fe, Valencia, SpainUnidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, SpainDepartamento de Fisiología, Universitat de València, Valencia, SpainInstituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, SpainBackgroundEtiological classification of ischemic stroke is fundamental for secondary prevention, but frequently results in undetermined cause. We aimed to develop a Deep Learning (DL)-based model for automatic etiological classification of ischemic stroke using digital images of thrombi retrieved by mechanical thrombectomy.MethodsPatients with large vessel occlusion stroke subjected to mechanical thrombectomy between April 2016 and January 2023 at La Fe University and Polytechnic Hospital in Valencia were included. Thrombus digital images were obtained and clinical characteristics, including TOAST etiological classification as reference standard, were retrieved. Statistical analysis was performed to compare clinical characteristics between atherothrombotic and cardioembolic strokes. A DL method was designed based on two deep neural networks for: (1) image segmentation and (2) image classification including clinical characteristics. The metrics used were DICE coefficient for the segmentation network, and accuracy, precision, sensitivity, specificity and area under the curve (AUC) for the predictions of the classification network.ResultsA total of 166 patients (mean age 69 [SD, 13], 67 female) were included. TOAST classification was: 31 atherothrombotic, 87 cardioembolic, and 48 cryptogenic. The segmentation network achieved an average DICE coefficient of 0.96 [SD, 0.13]. The optimal fused imaging and clinical classification network had a 0.968 accuracy [95% CI, 0.935–0.994], and AUC of 0.947 [95% CI, 0.870–1]. Cryptogenic thrombi were classified as cardioembolic (96%) or atherothrombotic (4%).ConclusionTwo convolutional neural networks perform the automatic segmentation of thrombus images and, combined with selected clinical characteristics, their accurate and precise classification into atherothrombotic or cardioembolic etiology in patients with acute ischemic stroke.https://www.frontiersin.org/articles/10.3389/fneur.2025.1534845/fullischemic strokeetiologyartificial intelligencedeep learningsegmentationclassification
spellingShingle Álvaro Lucero-Garófano
Álvaro Lucero-Garófano
Alicia Aliena-Valero
Isabel Vielba-Gómez
Isabel Vielba-Gómez
Irene Escudero-Martínez
Irene Escudero-Martínez
Lluís Morales-Caba
Lluís Morales-Caba
Fernando Aparici-Robles
Fernando Aparici-Robles
Diana L. Tarruella Hernández
Diana L. Tarruella Hernández
Gerardo Fortea
Gerardo Fortea
José I. Tembl
José I. Tembl
Juan B. Salom
Juan B. Salom
José V. Manjón
Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
Frontiers in Neurology
ischemic stroke
etiology
artificial intelligence
deep learning
segmentation
classification
title Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
title_full Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
title_fullStr Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
title_full_unstemmed Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
title_short Automatic etiological classification of stroke thrombus digital photographs using a deep learning model
title_sort automatic etiological classification of stroke thrombus digital photographs using a deep learning model
topic ischemic stroke
etiology
artificial intelligence
deep learning
segmentation
classification
url https://www.frontiersin.org/articles/10.3389/fneur.2025.1534845/full
work_keys_str_mv AT alvarolucerogarofano automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT alvarolucerogarofano automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT aliciaalienavalero automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT isabelvielbagomez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT isabelvielbagomez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT ireneescuderomartinez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT ireneescuderomartinez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT lluismoralescaba automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT lluismoralescaba automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT fernandoaparicirobles automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT fernandoaparicirobles automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT dianaltarruellahernandez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT dianaltarruellahernandez automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT gerardofortea automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT gerardofortea automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT joseitembl automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT joseitembl automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT juanbsalom automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT juanbsalom automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel
AT josevmanjon automaticetiologicalclassificationofstrokethrombusdigitalphotographsusingadeeplearningmodel