Influence of Viscous Effects on Mooring Buoy Motion
Field observations revealed that a mooring buoy rapidly drifts in a reciprocating motion along an arcuate path between two extreme positions. When the anchor point is considered the origin and viewed from an aerial perspective, this movement resembles a pendulum. The implications of this motion for...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/13/5/923 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Field observations revealed that a mooring buoy rapidly drifts in a reciprocating motion along an arcuate path between two extreme positions. When the anchor point is considered the origin and viewed from an aerial perspective, this movement resembles a pendulum. The implications of this motion for data acquisition efficiency prompted our inquiry into this phenomenon. The comparative analysis of the model’s different movements under wave-only, current-only, and wave–current conditions demonstrates that currents are the source inducing this pendulum-like motion. To investigate the mechanism of this current-driven motion, the flow field around the buoy was visualized through numerical simulations. Specifically, the CFD results aligned with the field data and confirmed that periodic vortex shedding induces oscillatory forces, which dominate the rapid reciprocating movement. The findings emphasize the significant impact of fluid viscosity and the resulting vortex effects on the motion characteristics of buoys. They can provide a foundation for addressing more applied problems of data error-correcting and trajectory predictions. |
|---|---|
| ISSN: | 2077-1312 |