Attractor and Boundedness of Switched Stochastic Cohen-Grossberg Neural Networks

We address the problem of stochastic attractor and boundedness of a class of switched Cohen-Grossberg neural networks (CGNN) with discrete and infinitely distributed delays. With the help of stochastic analysis technology, the Lyapunov-Krasovskii functional method, linear matrix inequalities techniq...

Full description

Saved in:
Bibliographic Details
Main Authors: Chuangxia Huang, Jie Cao, Peng Wang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/4958217
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We address the problem of stochastic attractor and boundedness of a class of switched Cohen-Grossberg neural networks (CGNN) with discrete and infinitely distributed delays. With the help of stochastic analysis technology, the Lyapunov-Krasovskii functional method, linear matrix inequalities technique (LMI), and the average dwell time approach (ADT), some novel sufficient conditions regarding the issues of mean-square uniformly ultimate boundedness, the existence of a stochastic attractor, and the mean-square exponential stability for the switched Cohen-Grossberg neural networks are established. Finally, illustrative examples and their simulations are provided to illustrate the effectiveness of the proposed results.
ISSN:1026-0226
1607-887X