CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort

Background: Obesity is currently a pandemic and a cardinal risk factor for incident diabetes, a parallel growing pandemic. Measures commonly used to define obesity, i.e., BMI and waist circumference, do not accurately reflect body fatness. Methods: We examined the prognostic value of body fatness as...

Full description

Saved in:
Bibliographic Details
Main Authors: Ligia J. Dominguez, Carmen Sayón-Orea, Alfredo Gea, Estefania Toledo-Atucha, Maira Bes-Rastrollo, Mario Barbagallo, Miguel A. Martínez-González
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:The Journal of Nutrition, Health and Aging
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1279770725000697
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849315657874669568
author Ligia J. Dominguez
Carmen Sayón-Orea
Alfredo Gea
Estefania Toledo-Atucha
Maira Bes-Rastrollo
Mario Barbagallo
Miguel A. Martínez-González
author_facet Ligia J. Dominguez
Carmen Sayón-Orea
Alfredo Gea
Estefania Toledo-Atucha
Maira Bes-Rastrollo
Mario Barbagallo
Miguel A. Martínez-González
author_sort Ligia J. Dominguez
collection DOAJ
description Background: Obesity is currently a pandemic and a cardinal risk factor for incident diabetes, a parallel growing pandemic. Measures commonly used to define obesity, i.e., BMI and waist circumference, do not accurately reflect body fatness. Methods: We examined the prognostic value of body fatness assessed with the ‘Clínica Universidad de Navarra-Body Adiposity Estimator’ (CUN-BAE, range: 18.4–65.0 %) in 18,594 participants of the ''Seguimiento Universidad de Navarra'' prospective longitudinal cohort (60.5% women) without diabetes at baseline. Participants were followed-up with biennial questionnaires and multivariable-adjusted Cox models were used to estimate incident diabetes. Results: During 13.7 years of median follow-up, 209 participants developed diabetes. Progressively ascending quartiles of CUN-BAE were significantly associated with incident diabetes in multivariable-adjusted models, even after adjusting for BMI > 30 kg/m2. For each 2-unit increment in the CUN-BAE index, diabetes risk relatively increased by 46% in men and women (95% CI: 33%–62%). When comparing ROC AUC for CUN-BAE and BMI the association was stronger for CUN-BAE (p < 0.001). Conclusions: CUN-BAE index, an easy equation that can be used in any clinical setting, predicted better the risk of incident diabetes compared to BMI. Our results emphasize the importance of reducing and maintaining a low adiposity in order to prevent diabetes.
format Article
id doaj-art-1e17ad4c4f55466c8bdd64a43df32b0d
institution Kabale University
issn 1760-4788
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series The Journal of Nutrition, Health and Aging
spelling doaj-art-1e17ad4c4f55466c8bdd64a43df32b0d2025-08-20T03:52:04ZengElsevierThe Journal of Nutrition, Health and Aging1760-47882025-05-0129510054510.1016/j.jnha.2025.100545CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohortLigia J. Dominguez0Carmen Sayón-Orea1Alfredo Gea2Estefania Toledo-Atucha3Maira Bes-Rastrollo4Mario Barbagallo5Miguel A. Martínez-González6Department of Medicine and Surgery, University Kore of Enna, 94100 Enna, Italy; Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90127 Palermo, Italy; Corresponding author.Department of Preventive Medicine and Public Health, University of Navarra-IdiSNA, 31008 Pamplona, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Public Health Institute, 31003 Navarra, SpainDepartment of Preventive Medicine and Public Health, University of Navarra-IdiSNA, 31008 Pamplona, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, SpainDepartment of Preventive Medicine and Public Health, University of Navarra-IdiSNA, 31008 Pamplona, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, SpainDepartment of Preventive Medicine and Public Health, University of Navarra-IdiSNA, 31008 Pamplona, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, SpainGeriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90127 Palermo, ItalyDepartment of Preventive Medicine and Public Health, University of Navarra-IdiSNA, 31008 Pamplona, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, United StatesBackground: Obesity is currently a pandemic and a cardinal risk factor for incident diabetes, a parallel growing pandemic. Measures commonly used to define obesity, i.e., BMI and waist circumference, do not accurately reflect body fatness. Methods: We examined the prognostic value of body fatness assessed with the ‘Clínica Universidad de Navarra-Body Adiposity Estimator’ (CUN-BAE, range: 18.4–65.0 %) in 18,594 participants of the ''Seguimiento Universidad de Navarra'' prospective longitudinal cohort (60.5% women) without diabetes at baseline. Participants were followed-up with biennial questionnaires and multivariable-adjusted Cox models were used to estimate incident diabetes. Results: During 13.7 years of median follow-up, 209 participants developed diabetes. Progressively ascending quartiles of CUN-BAE were significantly associated with incident diabetes in multivariable-adjusted models, even after adjusting for BMI > 30 kg/m2. For each 2-unit increment in the CUN-BAE index, diabetes risk relatively increased by 46% in men and women (95% CI: 33%–62%). When comparing ROC AUC for CUN-BAE and BMI the association was stronger for CUN-BAE (p < 0.001). Conclusions: CUN-BAE index, an easy equation that can be used in any clinical setting, predicted better the risk of incident diabetes compared to BMI. Our results emphasize the importance of reducing and maintaining a low adiposity in order to prevent diabetes.http://www.sciencedirect.com/science/article/pii/S1279770725000697ObesityAdiposityCUN-BAEDiabetesLongitudinal
spellingShingle Ligia J. Dominguez
Carmen Sayón-Orea
Alfredo Gea
Estefania Toledo-Atucha
Maira Bes-Rastrollo
Mario Barbagallo
Miguel A. Martínez-González
CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
The Journal of Nutrition, Health and Aging
Obesity
Adiposity
CUN-BAE
Diabetes
Longitudinal
title CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
title_full CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
title_fullStr CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
title_full_unstemmed CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
title_short CUN-BAE adiposity index prediction of incident type 2 diabetes: the Seguimiento Universidad de Navarra prospective cohort
title_sort cun bae adiposity index prediction of incident type 2 diabetes the seguimiento universidad de navarra prospective cohort
topic Obesity
Adiposity
CUN-BAE
Diabetes
Longitudinal
url http://www.sciencedirect.com/science/article/pii/S1279770725000697
work_keys_str_mv AT ligiajdominguez cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT carmensayonorea cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT alfredogea cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT estefaniatoledoatucha cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT mairabesrastrollo cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT mariobarbagallo cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort
AT miguelamartinezgonzalez cunbaeadiposityindexpredictionofincidenttype2diabetestheseguimientouniversidaddenavarraprospectivecohort