Some Fractional Operators with the Generalized Bessel–Maitland Function

In this paper, we aim to determine some results of the generalized Bessel–Maitland function in the field of fractional calculus. Here, some relations of the generalized Bessel–Maitland functions and the Mittag-Leffler functions are considered. We develop Saigo and Riemann–Liouville fractional integr...

Full description

Saved in:
Bibliographic Details
Main Authors: R. S. Ali, S. Mubeen, I. Nayab, Serkan Araci, G. Rahman, K. S. Nisar
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/1378457
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we aim to determine some results of the generalized Bessel–Maitland function in the field of fractional calculus. Here, some relations of the generalized Bessel–Maitland functions and the Mittag-Leffler functions are considered. We develop Saigo and Riemann–Liouville fractional integral operators by using the generalized Bessel–Maitland function, and results can be seen in the form of Fox–Wright functions. We establish a new operator Zν,η,ρ,γ,w,a+μ,ξ,m,σϕ and its inverse operator Dν,η,ρ,γ,w,a+μ,ξ,m,σϕ, involving the generalized Bessel–Maitland function as its kernel, and also discuss its convergence and boundedness. Moreover, the Riemann–Liouville operator and the integral transform (Laplace) of the new operator have been developed.
ISSN:1026-0226
1607-887X