Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial

Objective: To investigate the cost-effectiveness of using artificial intelligence (AI) to screen for low ejection fraction (EF) in routine clinical practice using a pragmatic randomized controlled trial (RCT). Patients and Methods: In a post hoc analysis of the electrocardiogram (ECG) AI-guided scre...

Full description

Saved in:
Bibliographic Details
Main Authors: Viengneesee Thao, PhD, MS, Ye Zhu, MD, MPH, PhD, Andrew S. Tseng, MD, MPH, Jonathan W. Inselman, MS, Bijan J. Borah, PhD, Rozalina G. McCoy, MD, MS, Zachi I. Attia, PhD, Francisco Lopez-Jimenez, MD, MBA, Patricia A. Pellikka, MD, David R. Rushlow, MD, MBOE, Paul A. Friedman, MD, Peter A. Noseworthy, MD, MBA, Xiaoxi Yao, MPH, MS, PhD
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Mayo Clinic Proceedings: Digital Health
Online Access:http://www.sciencedirect.com/science/article/pii/S2949761224001044
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items