Generation of footprint-free, high-quality feline induced pluripotent stem cells using Sendai virus vector

Companion animals, such as felines and canines, could provide an excellent platform for translational research from veterinary to human medicine. However, the use of feline induced pluripotent stems (fiPSCs) of quality in basic or clinical research has not been reported. Here, we generated footprint...

Full description

Saved in:
Bibliographic Details
Main Authors: Kazuto Kimura, Masaya Tsukamoto, Hiroko Sugisaki, Miyuu Tanaka, Mitsuru Kuwamura, Yuki Matsumoto, Genki Ishihara, Kei Watanabe, Mika Okada, Mahito Nakanishi, Kikuya Sugiura, Shingo Hatoya
Format: Article
Language:English
Published: Elsevier 2024-06-01
Series:Regenerative Therapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352320424001494
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Companion animals, such as felines and canines, could provide an excellent platform for translational research from veterinary to human medicine. However, the use of feline induced pluripotent stems (fiPSCs) of quality in basic or clinical research has not been reported. Here, we generated footprint-free fiPSCs derived from embryonic cells, as well as juvenile feline uterus-derived cells using Sendai virus vector harboring six feline-specific pluripotency-associated genes. The fiPSCs were confirmed to be of high quality with the potential to form teratomas including all three germ layers. Furthermore, our fiPSCs were maintained under feeder-free and chemically-defined conditions using StemFit® AK02N and recombinant laminin 511, iMatrix-511. Further research on fiPSCs could result in their widespread application in veterinary regenerative medicine, which could pave the way for their use in advanced regenerative medicine research for humans.
ISSN:2352-3204