Tunable multi-electron redox polyoxometalates for decoupled water splitting driven by sunlight
Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates m...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58622-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract It remains a great challenge to explore redox mediators with multi-electron, suitable redox potential, and stable pH buffer ability to simulate the natural solar-to-fuel process. In this work, we present a defect engineering strategy to design soluble multi-electron redox polyoxometalates mediators to construct a photocatalysis-electrolysis relay system to decouple H2 and O2 evolution in solar-driven water splitting. The appropriate use of vanadium atoms to replace tungsten in the Dawson-type phosphotungstate successfully regulated the redox properties of the molecular clusters. Specifically, the single vanadium substitution structure ({P2W17V}) possesses 1-electron redox active and sequential proton-electron transfer behavior, while the tri-vanadium substituted cluster ({P2W15V3}) exhibits 3-electron redox active and cooperative proton electron transfer behavior. Based on the developed multi-electronic redox mediator with pH buffering capacity, suitable redox potential (0.6 V), and fast electron exchange rate, we build a photocatalysis-electrolysis relay water splitting system. This system allows for high capacity of solar energy storage through photocatalytic O2 evolution using BiVO4 photocatalyst and stable H2 production with a high Faraday efficiency of over 98.5% in the electrolysis subsystem. |
|---|---|
| ISSN: | 2041-1723 |