Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways

Abstract Background NK cells engineered to express interleukin-15 (IL-15) and a CD19-targeted chimeric antigen receptor (CAR) have been used to treat patients with relapsed and/or refractory B cell malignances, demonstrating encouraging outcomes and favorable safety profile. However, the effect of I...

Full description

Saved in:
Bibliographic Details
Main Authors: Bailin He, Hong Chen, Jiaxu Wu, Shiqiu Qiu, Qiusui Mai, Qing Zeng, Cong Wang, Shikai Deng, Zihong Cai, Xiaoli Liu, Li Xuan, Chengyao Li, Hongsheng Zhou, Qifa Liu, Na Xu
Format: Article
Language:English
Published: BMC 2025-04-01
Series:Experimental Hematology & Oncology
Subjects:
Online Access:https://doi.org/10.1186/s40164-025-00639-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background NK cells engineered to express interleukin-15 (IL-15) and a CD19-targeted chimeric antigen receptor (CAR) have been used to treat patients with relapsed and/or refractory B cell malignances, demonstrating encouraging outcomes and favorable safety profile. However, the effect of IL-21 in CAR-NK cell therapy remains unknown. Methods CD19-specific CAR with 4-1BB costimulatory domain and cytokine IL-21 or IL-15 was constructed and transduced into peripheral blood (PB)-derived NK cells to produce CD19-CAR-IL21 NK cells (CAR-21) or CD19-CAR-IL15 NK cells (CAR-15), respectively. The phenotypic profile, transcriptomic characteristics, functionality and anti-tumor activity of CAR-21 NK cells and CAR-15 NK cells were compared. Results Compared with CAR-NK cells co-expressing IL-15, CAR-NK cells co-expressing IL-21 exhibited significantly increased IFN-γ, TNF-α and Granzyme B production, as well as degranulation, in response to CD19+ Raji lymphoma cells, resulting in enhanced cytotoxic activity upon repetitive tumor stimulation. Furthermore, IL-21 co-expression improved the in vivo persistence of CAR-NK cells and significantly suppressed tumor growth in a xenograft Raji lymphoma murine model, leading to prolonged survival of CD19+ tumor-bearing mice. RNA sequencing revealed that CAR-21 NK cells have a distinct transcriptomic signature characterized by enriched in cytokine, cytotoxicity, and metabolic related signaling, when compared with CAR-15 NK or CAR NK cells. Conclusions This study demonstrated that CD19-specific CAR-NK cells engineered to express IL-21 exhibit superior persistence and anti-tumor activity against CD19+ tumor compared to CAR-NK cells co-expressing IL-15, which might be a promising therapeutic strategy for treating patients with relapse or refractory B cell malignances.
ISSN:2162-3619