Efficient Fine-Tuning of Large Language Models via a Low-Rank Gradient Estimator

In this paper, we present a Low-Rank Gradient Estimator (LoGE) to accelerate the finetune-time computation of transformers, especially large language models (LLMs). Unlike Parameter-Efficient Fine-Tuning (PEFT) methods, which primarily aim to minimize the number of fine-tuning parameters, LoGE also...

Full description

Saved in:
Bibliographic Details
Main Authors: Luoming Zhang, Zhenyu Lou, Yangwei Ying, Cheng Yang, Hong Zhou
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/1/82
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present a Low-Rank Gradient Estimator (LoGE) to accelerate the finetune-time computation of transformers, especially large language models (LLMs). Unlike Parameter-Efficient Fine-Tuning (PEFT) methods, which primarily aim to minimize the number of fine-tuning parameters, LoGE also significantly reduces the computational load of activation gradient calculations by decomposing pre-trained weights and utilizing low-rank matrices during the backward pass. Our approach includes an effective solution for identifying sensitive and important latent subspaces in large models before training with downstream datasets. As LoGE does not alter the network structure, it can be conveniently integrated into existing models. We validated LoGE’s efficacy through comprehensive experiments across various models on various tasks. For the widely used LLaMA model equipped with LoRA, LoGE achieves up to a 1.3× speedup while maintaining graceful accuracy.
ISSN:2076-3417