Survey of Microcystin-Producing Cyanobacteria in French Lakes of Various Trophic Status Using Environmental and Cyanobacterial Parameters and an Active Mussel Biomonitoring
Microcystins (MCs), hepatotoxins produced by cyanobacteria, represent a potential threat to aquatic ecosystems and human health. Measuring various environmental and cyanobacterial parameters in water samples can be useful for monitoring water quality and assessing risk but remains a short-term appro...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Toxins |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-6651/17/5/245 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Microcystins (MCs), hepatotoxins produced by cyanobacteria, represent a potential threat to aquatic ecosystems and human health. Measuring various environmental and cyanobacterial parameters in water samples can be useful for monitoring water quality and assessing risk but remains a short-term approach. Beyond local risk assessments, estimating global and medium-term levels of freshwater contamination by MC-producing cyanobacteria is challenging in large lakes due to the spatio-temporal variability of their proliferation and the need to multiply sampling dates and locations. In such conditions, a sentinel organism can be valuable for monitoring MCs in situ and providing a time-integrated picture of contamination levels at various stations. We previously assessed the ability of the freshwater bivalves <i>Anodonta anatina</i> and <i>Dreissena polymorpha</i> to act as biointegrators of MCs, even under low exposure levels to cyanobacteria. In this study, through a two-season investigation in several French lakes experiencing moderate cyanobacterial blooms, we evaluated the relevance of various parameters (cyanobacterial density and biovolume, chlorophyll-a, and phycocyanin) as well as the use of bivalves as indicators of medium-term freshwater contamination by MC-producing cyanobacteria. MC concentrations in cyanobacterial biomass (intracellular MCs) and in bivalves (free MCs, being unbound, and total free and protein-bound accumulated MCs) were measured alongside the characterization of phytoplankton communities. Both mussels integrated and highlighted the presence of intracellular MCs in the environment over the period between two successive water samplings, even at low contamination levels, demonstrating their suitability for in situ biomonitoring of MC-producing cyanobacteria. The results are discussed in terms of the strengths and limitations of different parameters for assessing MC contamination levels in waters depending on the objective (managing, preventing, or global evaluation) and the monitoring strategies used. |
|---|---|
| ISSN: | 2072-6651 |