Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data

In this work we mainly prove the following interior gradient estimates in weighted Lorentz spaces $$ g^{-1} \left[\mathcal M_1(\mu) \right] \in L^{q, r}_{w, loc} (\Omega) \Longrightarrow |Du| \in L^{q, r}_{w, loc} (\Omega), $$ where $g(t)= t a(t)$ for $t\geq 0$ and $\mathcal{M}_1(\mu)(x)$ is...

Full description

Saved in:
Bibliographic Details
Main Author: Fengping Yao
Format: Article
Language:English
Published: University of Szeged 2024-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10788
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533466517176320
author Fengping Yao
author_facet Fengping Yao
author_sort Fengping Yao
collection DOAJ
description In this work we mainly prove the following interior gradient estimates in weighted Lorentz spaces $$ g^{-1} \left[\mathcal M_1(\mu) \right] \in L^{q, r}_{w, loc} (\Omega) \Longrightarrow |Du| \in L^{q, r}_{w, loc} (\Omega), $$ where $g(t)= t a(t)$ for $t\geq 0$ and $\mathcal{M}_1(\mu)(x)$ is the first-order fractional maximal function $$ \mathcal{M}_1(\mu)(x):=\sup_{r>0}\frac{r|\mu|(B_r(x))}{|B_r(x)|}, $$ for a class of non-homogeneous divergence quasilinear elliptic equations with measure data in the subquadratic case \begin{equation*} -\operatorname{div}\left[a \left( \left( A D u \cdot D u\right)^{\frac{1}{2}} \right)A D u \right] =\mu \quad \mbox{in}~ \Omega, \end{equation*} whose model cases are the classical elliptic $p$-Laplacian equation with measure data \begin{align*} -\operatorname{div} \left( \left| D u \right|^{p-2} D u \right)=\mu \quad \mbox{for } 1<p<2 \end{align*} and the elliptic $p$-Laplacian equation with the logarithmic term and measure data \begin{equation*} -\operatorname{div} \left( \left| D u \right|^{p-2}\log \left(1+ \left| D u \right|\right) D u \right)=\mu \quad \mbox{for } 1<p<2. \end{equation*} It deserves to be specially noted that the subquadratic case is a little different from the superquadratic case since as an example, the modulus of ellipticity in the above-mentioned special cases tends to infinity when $|Du| \rightarrow 0$ for $1<p<2$.
format Article
id doaj-art-1b7daf4599a240839a51343f2ac09f52
institution Kabale University
issn 1417-3875
language English
publishDate 2024-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-1b7daf4599a240839a51343f2ac09f522025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-01-012024712510.14232/ejqtde.2024.1.710788Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure dataFengping Yao0Department of Mathematics, Shanghai University, Shanghai, China; Newtouch Center for Mathematics of Shanghai University, Shanghai, ChinaIn this work we mainly prove the following interior gradient estimates in weighted Lorentz spaces $$ g^{-1} \left[\mathcal M_1(\mu) \right] \in L^{q, r}_{w, loc} (\Omega) \Longrightarrow |Du| \in L^{q, r}_{w, loc} (\Omega), $$ where $g(t)= t a(t)$ for $t\geq 0$ and $\mathcal{M}_1(\mu)(x)$ is the first-order fractional maximal function $$ \mathcal{M}_1(\mu)(x):=\sup_{r>0}\frac{r|\mu|(B_r(x))}{|B_r(x)|}, $$ for a class of non-homogeneous divergence quasilinear elliptic equations with measure data in the subquadratic case \begin{equation*} -\operatorname{div}\left[a \left( \left( A D u \cdot D u\right)^{\frac{1}{2}} \right)A D u \right] =\mu \quad \mbox{in}~ \Omega, \end{equation*} whose model cases are the classical elliptic $p$-Laplacian equation with measure data \begin{align*} -\operatorname{div} \left( \left| D u \right|^{p-2} D u \right)=\mu \quad \mbox{for } 1<p<2 \end{align*} and the elliptic $p$-Laplacian equation with the logarithmic term and measure data \begin{equation*} -\operatorname{div} \left( \left| D u \right|^{p-2}\log \left(1+ \left| D u \right|\right) D u \right)=\mu \quad \mbox{for } 1<p<2. \end{equation*} It deserves to be specially noted that the subquadratic case is a little different from the superquadratic case since as an example, the modulus of ellipticity in the above-mentioned special cases tends to infinity when $|Du| \rightarrow 0$ for $1<p<2$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10788weightedlorentzgradientsubquadraticquasilinear ellipticmeasure
spellingShingle Fengping Yao
Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
Electronic Journal of Qualitative Theory of Differential Equations
weighted
lorentz
gradient
subquadratic
quasilinear elliptic
measure
title Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
title_full Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
title_fullStr Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
title_full_unstemmed Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
title_short Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data
title_sort weighted lorentz estimates for subquadratic quasilinear elliptic equations with measure data
topic weighted
lorentz
gradient
subquadratic
quasilinear elliptic
measure
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10788
work_keys_str_mv AT fengpingyao weightedlorentzestimatesforsubquadraticquasilinearellipticequationswithmeasuredata