Assessing the impact of land use and cover change on above-ground carbon storage in subtropical forests: a case study of Zhejiang Province, China

Land Use and Cover Change (LUCC) has emerged as a primary driver of terrestrial carbon storage changes. However, the contributions of LUCC to Above-Ground Carbon (AGC) storage in subtropical forests remain unclear due to the complex and diverse LUCC trajectory. Quantitative assessment of the impact...

Full description

Saved in:
Bibliographic Details
Main Authors: Zihao Huang, Huaqiang Du, Fangjie Mao, Xuejian Li, Guomo Zhou, Jiaqian Sun, Yanxin Xu, Jie Xuan, Yagang Lu, Lei Huang, Meixuan Song
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Geo-spatial Information Science
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/10095020.2024.2440615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Land Use and Cover Change (LUCC) has emerged as a primary driver of terrestrial carbon storage changes. However, the contributions of LUCC to Above-Ground Carbon (AGC) storage in subtropical forests remain unclear due to the complex and diverse LUCC trajectory. Quantitative assessment of the impact of different LUCC trajectories on carbon storage is essential for regional carbon cycle mechanisms. Therefore, this study focuses on Zhejiang Province, a representative subtropical forest region in China, to accurately assess the contribution of LUCC to AGC storage changes from 1984 to 2019. We first mapped the land cover patterns using the random forest and spatiotemporal filtering algorithm and then applied these patterns to drive an optimized BIOME-BGC model to simulate the spatiotemporal distribution of AGC density. Finally, the LUCC trajectories were classified into three categories: afforestation, deforestation, and forest type transformations. Their contributions to AGC changes were isolated and analyzed through the trajectory analysis. The results demonstrated that the forest area of Zhejiang Province increased from 5.35 × 106 ha to 6.83 × 106 ha (+27.66%) and the total forest AGC storage increased from 80.52 Tg C to 124.16 Tg C (+54.19%) between 1984 and 2019. The increase in forest AGC due to LUCC amounted to 31.26 Tg C, contributing 71.63% to the total. Specifically, the afforestation, deforestation, and forest type transformations contributed 82.37%, −17.27%, and 6.53% to the change in AGC, respectively. Overall, the afforestation within the LUCC trajectories was the primary contributing factor to the growth of forest AGC in Zhejiang Province from 1984 to 2019. This study obtained accurate LUCC and AGC data, clarifying the contribution of different LUCC trajectories and providing a better understanding of the responses of the forest carbon storage to LUCC dynamics.
ISSN:1009-5020
1993-5153