Data-driven non-intrusive reduced order modelling of selective laser melting additive manufacturing process using proper orthogonal decomposition and convolutional autoencoder
Abstract This study proposes and compares two data-driven, non-intrusive reduced-order models (ROMs) for additive manufacturing (AM) processes: a combined proper orthogonal decomposition-artificial neural network (POD-ANN) and a convolutional autoencoder-multilayer perceptron (CAE-MLP). The POD-ANN...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-08-01
|
| Series: | Advanced Modeling and Simulation in Engineering Sciences |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s40323-025-00305-6 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|