Using High‐Resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodies

Abstract Small water bodies (i.e., ponds; <0.01 km2) play an important role in Earth System processes, including carbon cycling and emissions of methane. Detection and monitoring of ponds using satellite imagery has been extremely difficult and many water maps are biased toward lakes (>0.01 km...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrew L. Mullen, Jennifer D. Watts, Brendan M. Rogers, Mark L. Carroll, Clayton D. Elder, Jonas Noomah, Zachary Williams, Jordan A. Caraballo‐Vega, Allison Bredder, Eliza Rickenbaugh, Eric Levenson, Sarah W. Cooley, Jacqueline K. Y. Hung, Greg Fiske, Stefano Potter, Yili Yang, Charles E. Miller, Susan M. Natali, Thomas A. Douglas, Ethan D. Kyzivat
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2022GL102327
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Small water bodies (i.e., ponds; <0.01 km2) play an important role in Earth System processes, including carbon cycling and emissions of methane. Detection and monitoring of ponds using satellite imagery has been extremely difficult and many water maps are biased toward lakes (>0.01 km2). We leverage high‐resolution (3 m) optical satellite imagery from Planet Labs and deep learning methods to map seasonal changes in pond and lake areal extent across four regions in Alaska. Our water maps indicate that changes in open water extent over the snow‐free season are especially pronounced in ponds. To investigate potential impacts of seasonal changes in pond area on carbon emissions, we provide a case study of open water methane emission budgets using the new water maps. Our approach has widespread applications for water resources, habitat and land cover change assessments, wildlife management, risk assessments, and other biogeochemical modeling efforts.
ISSN:0094-8276
1944-8007