Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens

Abstract Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with rem...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael K. Fenwick, Phillip G. Pierce, Jan Abendroth, Kayleigh F. Barrett, Lynn K. Barrett, Kalinga Bowatte, Ryan Choi, Ian Chun, Deborah G. Conrady, Justin K. Craig, David M. Dranow, Bradley Hammerson, Tate Higgins, Donald D. Lorimer, Peer Lukat, Stephen J. Mayclin, Stephen Nakazawa Hewitt, Ying Po Peng, Ashwini Shanbhogue, Hayden Smutney, Matthew Z. Z. Stigliano, Logan M. Tillery, Hannah S. Udell, Ellen G. Wallace, Amy E. DeRocher, Isabelle Q. Phan, Bart L. Staker, Sandhya Subramanian, Wesley C. Van Voorhis, Wulf Blankenfeldt, Rolf Müller, Thomas E. Edwards, Peter J. Myler
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-024-07175-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849220548352016384
author Michael K. Fenwick
Phillip G. Pierce
Jan Abendroth
Kayleigh F. Barrett
Lynn K. Barrett
Kalinga Bowatte
Ryan Choi
Ian Chun
Deborah G. Conrady
Justin K. Craig
David M. Dranow
Bradley Hammerson
Tate Higgins
Donald D. Lorimer
Peer Lukat
Stephen J. Mayclin
Stephen Nakazawa Hewitt
Ying Po Peng
Ashwini Shanbhogue
Hayden Smutney
Matthew Z. Z. Stigliano
Logan M. Tillery
Hannah S. Udell
Ellen G. Wallace
Amy E. DeRocher
Isabelle Q. Phan
Bart L. Staker
Sandhya Subramanian
Wesley C. Van Voorhis
Wulf Blankenfeldt
Rolf Müller
Thomas E. Edwards
Peter J. Myler
author_facet Michael K. Fenwick
Phillip G. Pierce
Jan Abendroth
Kayleigh F. Barrett
Lynn K. Barrett
Kalinga Bowatte
Ryan Choi
Ian Chun
Deborah G. Conrady
Justin K. Craig
David M. Dranow
Bradley Hammerson
Tate Higgins
Donald D. Lorimer
Peer Lukat
Stephen J. Mayclin
Stephen Nakazawa Hewitt
Ying Po Peng
Ashwini Shanbhogue
Hayden Smutney
Matthew Z. Z. Stigliano
Logan M. Tillery
Hannah S. Udell
Ellen G. Wallace
Amy E. DeRocher
Isabelle Q. Phan
Bart L. Staker
Sandhya Subramanian
Wesley C. Van Voorhis
Wulf Blankenfeldt
Rolf Müller
Thomas E. Edwards
Peter J. Myler
author_sort Michael K. Fenwick
collection DOAJ
description Abstract Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity – the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets. Fifteen crystal structures of β-clamp orthologs were solved, most from Gram-negative bacteria, including eight cocrystal structures with griselimycin. The ensemble of structures samples widely diverse β-clamp architectures and reveals unique protein-ligand interactions with varying degrees of complementarity. Although griselimycin clearly co-evolved with Gram-positive β-clamps, binding affinity measurements demonstrate that the high selectivity observed previously extends to the Gram-negative orthologs, with K D values ranging from 7 to 496 nM for the wild-type orthologs considered. The collective results should aid future structure-guided development of peptide antibiotics against β-clamp proteins of a wide variety of bacterial targets.
format Article
id doaj-art-1a656d43c6764dba945de1b0c7cfbe21
institution Kabale University
issn 2399-3642
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj-art-1a656d43c6764dba945de1b0c7cfbe212024-12-08T12:41:20ZengNature PortfolioCommunications Biology2399-36422024-12-017111310.1038/s42003-024-07175-5Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogensMichael K. Fenwick0Phillip G. Pierce1Jan Abendroth2Kayleigh F. Barrett3Lynn K. Barrett4Kalinga Bowatte5Ryan Choi6Ian Chun7Deborah G. Conrady8Justin K. Craig9David M. Dranow10Bradley Hammerson11Tate Higgins12Donald D. Lorimer13Peer Lukat14Stephen J. Mayclin15Stephen Nakazawa Hewitt16Ying Po Peng17Ashwini Shanbhogue18Hayden Smutney19Matthew Z. Z. Stigliano20Logan M. Tillery21Hannah S. Udell22Ellen G. Wallace23Amy E. DeRocher24Isabelle Q. Phan25Bart L. Staker26Sandhya Subramanian27Wesley C. Van Voorhis28Wulf Blankenfeldt29Rolf Müller30Thomas E. Edwards31Peter J. Myler32Seattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseStructure and Function of Proteins, Helmholtz Center for Infection ResearchSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseStructure and Function of Proteins, Helmholtz Center for Infection ResearchDepartment of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Seattle Structural Genomics Center for Infectious DiseaseSeattle Structural Genomics Center for Infectious DiseaseAbstract Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity – the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets. Fifteen crystal structures of β-clamp orthologs were solved, most from Gram-negative bacteria, including eight cocrystal structures with griselimycin. The ensemble of structures samples widely diverse β-clamp architectures and reveals unique protein-ligand interactions with varying degrees of complementarity. Although griselimycin clearly co-evolved with Gram-positive β-clamps, binding affinity measurements demonstrate that the high selectivity observed previously extends to the Gram-negative orthologs, with K D values ranging from 7 to 496 nM for the wild-type orthologs considered. The collective results should aid future structure-guided development of peptide antibiotics against β-clamp proteins of a wide variety of bacterial targets.https://doi.org/10.1038/s42003-024-07175-5
spellingShingle Michael K. Fenwick
Phillip G. Pierce
Jan Abendroth
Kayleigh F. Barrett
Lynn K. Barrett
Kalinga Bowatte
Ryan Choi
Ian Chun
Deborah G. Conrady
Justin K. Craig
David M. Dranow
Bradley Hammerson
Tate Higgins
Donald D. Lorimer
Peer Lukat
Stephen J. Mayclin
Stephen Nakazawa Hewitt
Ying Po Peng
Ashwini Shanbhogue
Hayden Smutney
Matthew Z. Z. Stigliano
Logan M. Tillery
Hannah S. Udell
Ellen G. Wallace
Amy E. DeRocher
Isabelle Q. Phan
Bart L. Staker
Sandhya Subramanian
Wesley C. Van Voorhis
Wulf Blankenfeldt
Rolf Müller
Thomas E. Edwards
Peter J. Myler
Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
Communications Biology
title Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
title_full Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
title_fullStr Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
title_full_unstemmed Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
title_short Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
title_sort exquisite selectivity of griselimycin extends to beta subunit of dna polymerases from gram negative bacterial pathogens
url https://doi.org/10.1038/s42003-024-07175-5
work_keys_str_mv AT michaelkfenwick exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT phillipgpierce exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT janabendroth exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT kayleighfbarrett exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT lynnkbarrett exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT kalingabowatte exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT ryanchoi exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT ianchun exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT deborahgconrady exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT justinkcraig exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT davidmdranow exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT bradleyhammerson exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT tatehiggins exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT donalddlorimer exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT peerlukat exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT stephenjmayclin exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT stephennakazawahewitt exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT yingpopeng exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT ashwinishanbhogue exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT haydensmutney exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT matthewzzstigliano exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT loganmtillery exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT hannahsudell exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT ellengwallace exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT amyederocher exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT isabelleqphan exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT bartlstaker exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT sandhyasubramanian exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT wesleycvanvoorhis exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT wulfblankenfeldt exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT rolfmuller exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT thomaseedwards exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens
AT peterjmyler exquisiteselectivityofgriselimycinextendstobetasubunitofdnapolymerasesfromgramnegativebacterialpathogens