Interpretable Machine Learning with SHAP and XGBoost for Lung Cancer Prediction Insights
Kanker paru-paru tetap menjadi salah satu penyebab kematian utama di seluruh dunia, dan deteksi dini melalui metode yang akurat dan andal sangat penting untuk meningkatkan prognosis pasien. Studi ini mengusulkan model klasifikasi kanker paru-paru yang mengintegrasikan XGBoost dengan SHapley Additive...
        Saved in:
      
    
          | Main Authors: | Taufik Kurniawan, Laily Hermawanti, Achmad Nuruddin Safriandono | 
|---|---|
| Format: | Article | 
| Language: | English | 
| Published: | Politeknik Negeri Batam
    
        2024-11-01 | 
| Series: | Journal of Applied Informatics and Computing | 
| Subjects: | |
| Online Access: | https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/8395 | 
| Tags: | Add Tag 
      No Tags, Be the first to tag this record!
   | 
Similar Items
- 
                
                    A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME        
                          
 by: Ahmed M. Salih, et al.
 Published: (2025-01-01)
- 
                
                    Explainable prediction model for punching shear strength of FRP-RC slabs based on kernel density estimation and XGBoost        
                          
 by: Sheng Zheng, et al.
 Published: (2024-12-01)
- 
                
                    Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP        
                          
 by: Mingyang Chen, et al.
 Published: (2024-12-01)
- 
                
                    Identifying the Roadway Infrastructure Factors Affecting Road Accidents Using Interpretable Machine Learning and Data Augmentation        
                          
 by: Jonghak Lee, et al.
 Published: (2025-01-01)
- 
                
                    Investigating factors influencing quality of life in thyroid eye disease: insight from machine learning approaches        
                          
 by: Haiyang Zhang, et al.
 Published: (2025-01-01)
 
       