Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients

Summary: Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic impli...

Full description

Saved in:
Bibliographic Details
Main Authors: Benoit Schmauch, Vincent Cabeli, Omar Darwiche Domingues, Jean-Eudes Le Douget, Alexandra Hardy, Reda Belbahri, Charles Maussion, Alberto Romagnoni, Markus Eckstein, Florian Fuchs, Aurélie Swalduz, Sylvie Lantuejoul, Hugo Crochet, François Ghiringhelli, Valentin Derangere, Caroline Truntzer, Harvey Pass, Andre L. Moreira, Luis Chiriboga, Yuanning Zheng, Michael Ozawa, Brooke E. Howitt, Olivier Gevaert, Nicolas Girard, Elton Rexhepaj, Iris Valtingojer, Laurent Debussche, Emanuele de Rinaldis, Frank Nestle, Emmanuel Spanakis, Valeria R. Fantin, Eric Y. Durand, Marion Classe, Katharina Von Loga, Elodie Pronier, Matteo Cesaroni
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004224028657
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560091509129216
author Benoit Schmauch
Vincent Cabeli
Omar Darwiche Domingues
Jean-Eudes Le Douget
Alexandra Hardy
Reda Belbahri
Charles Maussion
Alberto Romagnoni
Markus Eckstein
Florian Fuchs
Aurélie Swalduz
Sylvie Lantuejoul
Hugo Crochet
François Ghiringhelli
Valentin Derangere
Caroline Truntzer
Harvey Pass
Andre L. Moreira
Luis Chiriboga
Yuanning Zheng
Michael Ozawa
Brooke E. Howitt
Olivier Gevaert
Nicolas Girard
Elton Rexhepaj
Iris Valtingojer
Laurent Debussche
Emanuele de Rinaldis
Frank Nestle
Emmanuel Spanakis
Valeria R. Fantin
Eric Y. Durand
Marion Classe
Katharina Von Loga
Elodie Pronier
Matteo Cesaroni
author_facet Benoit Schmauch
Vincent Cabeli
Omar Darwiche Domingues
Jean-Eudes Le Douget
Alexandra Hardy
Reda Belbahri
Charles Maussion
Alberto Romagnoni
Markus Eckstein
Florian Fuchs
Aurélie Swalduz
Sylvie Lantuejoul
Hugo Crochet
François Ghiringhelli
Valentin Derangere
Caroline Truntzer
Harvey Pass
Andre L. Moreira
Luis Chiriboga
Yuanning Zheng
Michael Ozawa
Brooke E. Howitt
Olivier Gevaert
Nicolas Girard
Elton Rexhepaj
Iris Valtingojer
Laurent Debussche
Emanuele de Rinaldis
Frank Nestle
Emmanuel Spanakis
Valeria R. Fantin
Eric Y. Durand
Marion Classe
Katharina Von Loga
Elodie Pronier
Matteo Cesaroni
author_sort Benoit Schmauch
collection DOAJ
description Summary: Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications. Therefore, identifying patients with a dysregulated Hippo pathway is key to enhancing treatment impact. Although recent studies have derived RNA-seq-based signatures, there remains a need for a reproducible and cost-effective method to measure the pathway activation. In recent years, deep learning applied to histology slides have emerged as an effective way to predict molecular information from a data modality available in clinical routine. Here, we trained models to predict YAP1/TEAD activity from H&E-stained histology slides in multiple cancers. The robustness of our approach was assessed in seven independent validation cohorts. Finally, we showed that histological markers of disease aggressiveness were associated with dysfunctional Hippo signaling.
format Article
id doaj-art-196ce701b91b49b98d1b8c6acb9bfdbc
institution Kabale University
issn 2589-0042
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series iScience
spelling doaj-art-196ce701b91b49b98d1b8c6acb9bfdbc2025-01-05T04:28:31ZengElsevieriScience2589-00422025-01-01281111638Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patientsBenoit Schmauch0Vincent Cabeli1Omar Darwiche Domingues2Jean-Eudes Le Douget3Alexandra Hardy4Reda Belbahri5Charles Maussion6Alberto Romagnoni7Markus Eckstein8Florian Fuchs9Aurélie Swalduz10Sylvie Lantuejoul11Hugo Crochet12François Ghiringhelli13Valentin Derangere14Caroline Truntzer15Harvey Pass16Andre L. Moreira17Luis Chiriboga18Yuanning Zheng19Michael Ozawa20Brooke E. Howitt21Olivier Gevaert22Nicolas Girard23Elton Rexhepaj24Iris Valtingojer25Laurent Debussche26Emanuele de Rinaldis27Frank Nestle28Emmanuel Spanakis29Valeria R. Fantin30Eric Y. Durand31Marion Classe32Katharina Von Loga33Elodie Pronier34Matteo Cesaroni35Owkin France, Paris, France; Corresponding authorOwkin France, Paris, FranceOwkin France, Paris, FranceOwkin France, Paris, FranceOwkin France, Paris, France; Corresponding authorOwkin France, Paris, FranceOwkin France, Paris, FranceOwkin France, Paris, FranceBavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Institute of Pathology, University Hospital Erlangen, Erlangen, GermanyBavarian Cancer Research Center (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GermanyClaude Bernard University Lyon I & Léon Bérard Cancer Center, Lyon, FranceGrenoble Alpes University and Léon Bérard Cancer Center, Lyon, FranceLéon Bérard Cancer Center, Lyon, FranceCentre de Recherche INSERM LNC-UMR1231, Dijon, FranceCentre de Recherche INSERM LNC-UMR1231, Dijon, France; Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France; Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy Franche-Comté, Dijon, FranceCentre de Recherche INSERM LNC-UMR1231, Dijon, France; Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France; Genetic and Immunology Medical Institute, Dijon, France; University of Burgundy Franche-Comté, Dijon, FranceDepartment of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, USADepartment of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USADepartment of Pathology, NYU Langone New York University Langone Medical Center, New York, NY, USADepartment of Pathology, Stanford University, Stanford, CA, USADepartment of Pathology, Stanford University, Stanford, CA, USADepartment of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USADepartment of Medicine & Biomedical Data Science, Stanford University, Stanford, CA, USAInstitut Curie, Paris, FranceSanofi, Paris, FranceSanofi, Paris, FranceSanofi, Paris, FranceSanofi, Cambridge, MA, USASanofi, Cambridge, MA, USASanofi, Paris, FranceSanofi, Cambridge, MA, USAOwkin France, Paris, FranceSanofi, Paris, FranceOwkin France, Paris, FranceOwkin France, Paris, FranceSanofi, Paris, FranceSummary: Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of YAP1 and TEAD-family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications. Therefore, identifying patients with a dysregulated Hippo pathway is key to enhancing treatment impact. Although recent studies have derived RNA-seq-based signatures, there remains a need for a reproducible and cost-effective method to measure the pathway activation. In recent years, deep learning applied to histology slides have emerged as an effective way to predict molecular information from a data modality available in clinical routine. Here, we trained models to predict YAP1/TEAD activity from H&E-stained histology slides in multiple cancers. The robustness of our approach was assessed in seven independent validation cohorts. Finally, we showed that histological markers of disease aggressiveness were associated with dysfunctional Hippo signaling.http://www.sciencedirect.com/science/article/pii/S2589004224028657Health sciencesApplied sciencesMachine learning
spellingShingle Benoit Schmauch
Vincent Cabeli
Omar Darwiche Domingues
Jean-Eudes Le Douget
Alexandra Hardy
Reda Belbahri
Charles Maussion
Alberto Romagnoni
Markus Eckstein
Florian Fuchs
Aurélie Swalduz
Sylvie Lantuejoul
Hugo Crochet
François Ghiringhelli
Valentin Derangere
Caroline Truntzer
Harvey Pass
Andre L. Moreira
Luis Chiriboga
Yuanning Zheng
Michael Ozawa
Brooke E. Howitt
Olivier Gevaert
Nicolas Girard
Elton Rexhepaj
Iris Valtingojer
Laurent Debussche
Emanuele de Rinaldis
Frank Nestle
Emmanuel Spanakis
Valeria R. Fantin
Eric Y. Durand
Marion Classe
Katharina Von Loga
Elodie Pronier
Matteo Cesaroni
Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
iScience
Health sciences
Applied sciences
Machine learning
title Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
title_full Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
title_fullStr Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
title_full_unstemmed Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
title_short Deep learning uncovers histological patterns of YAP1/TEAD activity related to disease aggressiveness in cancer patients
title_sort deep learning uncovers histological patterns of yap1 tead activity related to disease aggressiveness in cancer patients
topic Health sciences
Applied sciences
Machine learning
url http://www.sciencedirect.com/science/article/pii/S2589004224028657
work_keys_str_mv AT benoitschmauch deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT vincentcabeli deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT omardarwichedomingues deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT jeaneudesledouget deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT alexandrahardy deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT redabelbahri deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT charlesmaussion deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT albertoromagnoni deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT markuseckstein deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT florianfuchs deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT aurelieswalduz deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT sylvielantuejoul deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT hugocrochet deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT francoisghiringhelli deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT valentinderangere deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT carolinetruntzer deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT harveypass deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT andrelmoreira deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT luischiriboga deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT yuanningzheng deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT michaelozawa deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT brookeehowitt deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT oliviergevaert deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT nicolasgirard deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT eltonrexhepaj deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT irisvaltingojer deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT laurentdebussche deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT emanuelederinaldis deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT franknestle deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT emmanuelspanakis deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT valeriarfantin deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT ericydurand deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT marionclasse deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT katharinavonloga deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT elodiepronier deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients
AT matteocesaroni deeplearninguncovershistologicalpatternsofyap1teadactivityrelatedtodiseaseaggressivenessincancerpatients