Bipartite Toughness and k-Factors in Bipartite Graphs

We define a new invariant tB(G) in bipartite graphs that is analogous to the toughness t(G) and we give sufficient conditions in term of tB(G) for the existence of k-factors in bipartite graphs. We also show that these results are sharp.

Saved in:
Bibliographic Details
Main Authors: Guizhen Liu, Jianbo Qian, Jonathan Z. Sun, Rui Xu
Format: Article
Language:English
Published: Wiley 2008-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2008/597408
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849304265350184960
author Guizhen Liu
Jianbo Qian
Jonathan Z. Sun
Rui Xu
author_facet Guizhen Liu
Jianbo Qian
Jonathan Z. Sun
Rui Xu
author_sort Guizhen Liu
collection DOAJ
description We define a new invariant tB(G) in bipartite graphs that is analogous to the toughness t(G) and we give sufficient conditions in term of tB(G) for the existence of k-factors in bipartite graphs. We also show that these results are sharp.
format Article
id doaj-art-196abbe27f1644e7aa65dc861adf9edb
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2008-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-196abbe27f1644e7aa65dc861adf9edb2025-08-20T03:55:45ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252008-01-01200810.1155/2008/597408597408Bipartite Toughness and k-Factors in Bipartite GraphsGuizhen Liu0Jianbo Qian1Jonathan Z. Sun2Rui Xu3School of Mathematics and System Sciences, Shandong University, Jinan 250100, ChinaDepartment of Computer Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, CanadaSchool of Computing, The University of Southern Mississippi, Hattiesburg, MS 39406, USADepartment of Mathematics, College of Arts and Sciences, The State University of West Georgia, Carrollton, GA 30118, USAWe define a new invariant tB(G) in bipartite graphs that is analogous to the toughness t(G) and we give sufficient conditions in term of tB(G) for the existence of k-factors in bipartite graphs. We also show that these results are sharp.http://dx.doi.org/10.1155/2008/597408
spellingShingle Guizhen Liu
Jianbo Qian
Jonathan Z. Sun
Rui Xu
Bipartite Toughness and k-Factors in Bipartite Graphs
International Journal of Mathematics and Mathematical Sciences
title Bipartite Toughness and k-Factors in Bipartite Graphs
title_full Bipartite Toughness and k-Factors in Bipartite Graphs
title_fullStr Bipartite Toughness and k-Factors in Bipartite Graphs
title_full_unstemmed Bipartite Toughness and k-Factors in Bipartite Graphs
title_short Bipartite Toughness and k-Factors in Bipartite Graphs
title_sort bipartite toughness and k factors in bipartite graphs
url http://dx.doi.org/10.1155/2008/597408
work_keys_str_mv AT guizhenliu bipartitetoughnessandkfactorsinbipartitegraphs
AT jianboqian bipartitetoughnessandkfactorsinbipartitegraphs
AT jonathanzsun bipartitetoughnessandkfactorsinbipartitegraphs
AT ruixu bipartitetoughnessandkfactorsinbipartitegraphs