Investigation of the Theoretical Model of Nano-Coolant Thermal Conductivity Suitable for Proton Exchange Membrane Fuel Cells

The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its th...

Full description

Saved in:
Bibliographic Details
Main Authors: Qi Tao, Boao Fu, Fei Zhong
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/14/21/1710
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fuel cell vehicle is one of the essential directions for developing new energy vehicles. But heat dissipation is a critical technical difficulty that needs to be solved urgently. Nano-coolant is a promising coolant that can potentially replace the existing coolant of a fuel cell. However, its thermal conductivity has a significant impact on heat dissipation performance, which is closely related to nanoparticles’ thermal conductivity, nanoparticles’ volume fraction, and the nano-coolant temperature. Many scholars have created the thermal conductivity models for nano-coolants to explore the mechanism of nano-coolants’ thermal conductivity. At present, there is no unified opinion on the mechanism of the micro thermal conductivity of the nano-coolant. Hence, this paper proposed a novel model to predict the thermal conductivity of ethylene glycol/deionized water-based nano-coolants. A corrected model was designed based on the Hamilton & Crosser model and nanolayer theory. Finally, a new theoretical model of nano-coolant thermal conductivity suitable for fuel cell vehicles was constructed based on the base fluid’s experimental data.
ISSN:2079-4991