The Identification of Patterns in the Relation Between Biodiversity and Mutualistic Ecosystem Function Based on Network Resilience
Identifying the relation between biodiversity and mutualistic ecosystem function has been a longstanding concern. In this study, we present an interpretive model to evaluate the impact of each species on mutualistic ecosystem functions. By analyzing network resilience, we derive the average abundanc...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/3/231 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Identifying the relation between biodiversity and mutualistic ecosystem function has been a longstanding concern. In this study, we present an interpretive model to evaluate the impact of each species on mutualistic ecosystem functions. By analyzing network resilience, we derive the average abundance and tipping point of the ecosystem to represent ecosystem functions. Based on the order of species collapse, each species is classified according to the <i>F</i>-core. The model quantitatively evaluates the influence of species on mutualistic ecosystem functions in scenarios where species are removed from ecosystems. We propose a criterion for identifying redundant species: a species is considered redundant if its removal negatively impacts average abundance without affecting the tipping point. To validate the model, we introduce twenty-four mutualistic ecosystems. Our numerical simulations and analytical analyses reveal two distinct patterns: one indicating the presence of redundancy and the other suggesting that each species is essential. Additionally, in mutualistic ecosystems characterized by redundancy, specialist species are more likely to be identified as redundant. |
|---|---|
| ISSN: | 1099-4300 |