sparsegl: An R Package for Estimating Sparse Group Lasso

The sparse group lasso is a high-dimensional regression technique that is useful for problems whose predictors have a naturally grouped structure and where sparsity is encouraged at both the group and individual predictor level. In this paper we discuss a new R package for computing such regularize...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxuan Liang, Aaron Cohen, Anibal Sólon Heinsfeld, Franco Pestilli, Daniel J. McDonald
Format: Article
Language:English
Published: Foundation for Open Access Statistics 2024-08-01
Series:Journal of Statistical Software
Online Access:https://www.jstatsoft.org/index.php/jss/article/view/4897
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846101676997476352
author Xiaoxuan Liang
Aaron Cohen
Anibal Sólon Heinsfeld
Franco Pestilli
Daniel J. McDonald
author_facet Xiaoxuan Liang
Aaron Cohen
Anibal Sólon Heinsfeld
Franco Pestilli
Daniel J. McDonald
author_sort Xiaoxuan Liang
collection DOAJ
description The sparse group lasso is a high-dimensional regression technique that is useful for problems whose predictors have a naturally grouped structure and where sparsity is encouraged at both the group and individual predictor level. In this paper we discuss a new R package for computing such regularized models. The intention is to provide highly optimized solution routines enabling analysis of very large datasets, especially in the context of sparse design matrices.
format Article
id doaj-art-182f3acde8874439aaf7bec3184701e7
institution Kabale University
issn 1548-7660
language English
publishDate 2024-08-01
publisher Foundation for Open Access Statistics
record_format Article
series Journal of Statistical Software
spelling doaj-art-182f3acde8874439aaf7bec3184701e72024-12-29T00:12:42ZengFoundation for Open Access StatisticsJournal of Statistical Software1548-76602024-08-01110110.18637/jss.v110.i06sparsegl: An R Package for Estimating Sparse Group LassoXiaoxuan Liang0Aaron Cohen1Anibal Sólon Heinsfeld2Franco Pestilli3Daniel J. McDonald4University of British ColumbiaIndiana UniversityThe University of Texas at AustinThe University of Texas at AustinUniversity of British Columbia The sparse group lasso is a high-dimensional regression technique that is useful for problems whose predictors have a naturally grouped structure and where sparsity is encouraged at both the group and individual predictor level. In this paper we discuss a new R package for computing such regularized models. The intention is to provide highly optimized solution routines enabling analysis of very large datasets, especially in the context of sparse design matrices. https://www.jstatsoft.org/index.php/jss/article/view/4897
spellingShingle Xiaoxuan Liang
Aaron Cohen
Anibal Sólon Heinsfeld
Franco Pestilli
Daniel J. McDonald
sparsegl: An R Package for Estimating Sparse Group Lasso
Journal of Statistical Software
title sparsegl: An R Package for Estimating Sparse Group Lasso
title_full sparsegl: An R Package for Estimating Sparse Group Lasso
title_fullStr sparsegl: An R Package for Estimating Sparse Group Lasso
title_full_unstemmed sparsegl: An R Package for Estimating Sparse Group Lasso
title_short sparsegl: An R Package for Estimating Sparse Group Lasso
title_sort sparsegl an r package for estimating sparse group lasso
url https://www.jstatsoft.org/index.php/jss/article/view/4897
work_keys_str_mv AT xiaoxuanliang sparseglanrpackageforestimatingsparsegrouplasso
AT aaroncohen sparseglanrpackageforestimatingsparsegrouplasso
AT anibalsolonheinsfeld sparseglanrpackageforestimatingsparsegrouplasso
AT francopestilli sparseglanrpackageforestimatingsparsegrouplasso
AT danieljmcdonald sparseglanrpackageforestimatingsparsegrouplasso