Research on Q-learning based rate control approach for HTTP adaptive streaming

HTTP adaptive streaming (HAS) has become the standard for adaptive video streaming service.In changing network environments,current hardcoded-based rate adaptation algorithm was less flexible,and it is insufficient to consider the quality of experience (QoE).To optimize the QoE of users,a rate contr...

Full description

Saved in:
Bibliographic Details
Main Authors: Li-rong XIONG, Jing-zhi LEI, Xin JIN
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2017-09-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2017178/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:HTTP adaptive streaming (HAS) has become the standard for adaptive video streaming service.In changing network environments,current hardcoded-based rate adaptation algorithm was less flexible,and it is insufficient to consider the quality of experience (QoE).To optimize the QoE of users,a rate control approach based on Q-learning strategy was proposed.the client environments of HTTP adaptive video streaming was modeled and the state transition rule was defined.Three parameters related to QoE were quantified and a novel reward function was constructed.The experiments were employed by the Q-learning rate control approach in two typical HAS algorithms.The experiments show the rate control approach can enhance the stability of rate switching in HAS clients.
ISSN:1000-436X