Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings

The purpose of this research is to demonstrate the following assertions: an additive mapping $\mathcal{H}$ is a generalized ($\zeta, \xi$)-derivation associated with a ($\zeta, \xi$)-derivation ${\bf h}$, where $\zeta, \xi$ are endomorphisms on a $(m+n+p-1)!$-torsion free semiprime ring $\mathcal{A}...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu Zaid Ansari, Faiza Shujat, Muzibur Mozumder, Wasim Ahmed
Format: Article
Language:English
Published: Shahid Bahonar University of Kerman 2024-12-01
Series:Journal of Mahani Mathematical Research
Subjects:
Online Access:https://jmmrc.uk.ac.ir/article_4538_ed69d94ecb7889441871e7eaf04eaadb.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560166406815744
author Abu Zaid Ansari
Faiza Shujat
Muzibur Mozumder
Wasim Ahmed
author_facet Abu Zaid Ansari
Faiza Shujat
Muzibur Mozumder
Wasim Ahmed
author_sort Abu Zaid Ansari
collection DOAJ
description The purpose of this research is to demonstrate the following assertions: an additive mapping $\mathcal{H}$ is a generalized ($\zeta, \xi$)-derivation associated with a ($\zeta, \xi$)-derivation ${\bf h}$, where $\zeta, \xi$ are endomorphisms on a $(m+n+p-1)!$-torsion free semiprime ring $\mathcal{A}$. Here we prove another result in the setting of the generalized left ($\zeta, \xi$)-derivation on $\mathcal{A}$.
format Article
id doaj-art-17ed0920923541449d97870cf5a89ccb
institution Kabale University
issn 2251-7952
2645-4505
language English
publishDate 2024-12-01
publisher Shahid Bahonar University of Kerman
record_format Article
series Journal of Mahani Mathematical Research
spelling doaj-art-17ed0920923541449d97870cf5a89ccb2025-01-04T19:29:56ZengShahid Bahonar University of KermanJournal of Mahani Mathematical Research2251-79522645-45052024-12-01135414910.22103/jmmr.2024.23356.16414538Generalized Jordan triple (ζ, ξ)-derivations on semiprime ringsAbu Zaid Ansari0Faiza Shujat1Muzibur Mozumder2Wasim Ahmed3Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, K.S.A.Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, K.S.A.Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, IndiaDepartment of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh, IndiaThe purpose of this research is to demonstrate the following assertions: an additive mapping $\mathcal{H}$ is a generalized ($\zeta, \xi$)-derivation associated with a ($\zeta, \xi$)-derivation ${\bf h}$, where $\zeta, \xi$ are endomorphisms on a $(m+n+p-1)!$-torsion free semiprime ring $\mathcal{A}$. Here we prove another result in the setting of the generalized left ($\zeta, \xi$)-derivation on $\mathcal{A}$.https://jmmrc.uk.ac.ir/article_4538_ed69d94ecb7889441871e7eaf04eaadb.pdfsemiprime ringgeneralized (ζ, ξ)-derivation(ζ, ξ)-derivations
spellingShingle Abu Zaid Ansari
Faiza Shujat
Muzibur Mozumder
Wasim Ahmed
Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
Journal of Mahani Mathematical Research
semiprime ring
generalized (ζ, ξ)-derivation
(ζ, ξ)-derivations
title Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
title_full Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
title_fullStr Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
title_full_unstemmed Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
title_short Generalized Jordan triple (ζ, ξ)-derivations on semiprime rings
title_sort generalized jordan triple ζ ξ derivations on semiprime rings
topic semiprime ring
generalized (ζ, ξ)-derivation
(ζ, ξ)-derivations
url https://jmmrc.uk.ac.ir/article_4538_ed69d94ecb7889441871e7eaf04eaadb.pdf
work_keys_str_mv AT abuzaidansari generalizedjordantriplezxderivationsonsemiprimerings
AT faizashujat generalizedjordantriplezxderivationsonsemiprimerings
AT muziburmozumder generalizedjordantriplezxderivationsonsemiprimerings
AT wasimahmed generalizedjordantriplezxderivationsonsemiprimerings