Enhancing Water Barriers by Protein-Based Surface Treatments for Cellulose-Based Materials

The global packaging sector has grown consistently, and the use of sustainable materials, including recycled and biodegradable products, is expected to rise. This study focuses on the potential of producing barriers for water and water in moist air (water vapor) from proteins to protect cellulosic m...

Full description

Saved in:
Bibliographic Details
Main Authors: Bartłomiej Mazela, Andreas Treu, Karolina Tomkowiak, Waldemar Perdoch
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Journal of Natural Fibers
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/15440478.2024.2371915
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The global packaging sector has grown consistently, and the use of sustainable materials, including recycled and biodegradable products, is expected to rise. This study focuses on the potential of producing barriers for water and water in moist air (water vapor) from proteins to protect cellulosic materials. Owing to the specific requirements of packaging materials, the main subject of this research was their barrier and strength properties. The scope of this work includes selecting components and their physicochemical treatment to produce functionalized coatings on sprayed paper and pure films, as well as film-coated samples (paper laminated with film). The following tests were used to estimate the hydrophobic, hygroscopic, and strength properties: Cobb absorption, contact angle testing, dynamic vapor sorption, and dynamic mechanical analysis. In most cases, the spray-coated paper and film-coated samples absorbed less liquid water than untreated paper. Wheat gluten protein was the most effective water barrier. In all variants, the vapor sorption, desorption, and hysteresis effects (or the lack thereof) showed significant differences compared to those of cellulosic materials. All variants of the spray-coated and film-coated samples in the dynamic mechanical analysis showed an increase in the strength properties of the samples in comparison to the untreated paper. The increased humidity caused a significant loss in the mechanical properties of all variants, exceeding the strength loss of the untreated control samples.
ISSN:1544-0478
1544-046X