Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces

Let L=−△+VL=-\bigtriangleup +V be the Schrödinger operator on Rn{{\mathbb{R}}}^{n}, where V≠0V\ne 0 is a non-negative function satisfying the reverse Hölder class RHq1R{H}_{{q}_{1}} for some q1>n⁄2{q}_{1}\gt n/2. △\bigtriangleup is the Laplacian on Rn{{\mathbb{R}}}^{n}. Assume that bb is a membe...

Full description

Saved in:
Bibliographic Details
Main Authors: Celik Suleyman, Guliyev Vagif S., Akbulut Ali
Format: Article
Language:English
Published: De Gruyter 2024-11-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2024-0082
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846143479731716096
author Celik Suleyman
Guliyev Vagif S.
Akbulut Ali
author_facet Celik Suleyman
Guliyev Vagif S.
Akbulut Ali
author_sort Celik Suleyman
collection DOAJ
description Let L=−△+VL=-\bigtriangleup +V be the Schrödinger operator on Rn{{\mathbb{R}}}^{n}, where V≠0V\ne 0 is a non-negative function satisfying the reverse Hölder class RHq1R{H}_{{q}_{1}} for some q1>n⁄2{q}_{1}\gt n/2. △\bigtriangleup is the Laplacian on Rn{{\mathbb{R}}}^{n}. Assume that bb is a member of the Campanato space Λνθ(ρ){\Lambda }_{\nu }^{\theta }\left(\rho ) and that the fractional integral operator associated with LL is ℐβL{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}. We study the boundedness of the commutators [b,ℐβL]\left[b,{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}] with b∈Λνθ(ρ)b\in {\Lambda }_{\nu }^{\theta }\left(\rho ) on local generalized mixed Morrey spaces. Generalized mixed Morrey spaces Mp→,φα,V{M}_{\overrightarrow{p},\varphi }^{\alpha ,V}, vanishing generalized mixed Morrey spaces VMp→,φα,VV{M}_{\overrightarrow{p},\varphi }^{\alpha ,V}, and LMp→,φα,V,{x0}L{M}_{\overrightarrow{p},\varphi }^{\alpha ,V,\left\{{x}_{0}\right\}} are related to the Schrödinger operator, in that order. We demonstrate that the commutator operator [b,ℐβL]\left[b,{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}] is satisfied when bb belongs to Λνθ(ρ){\Lambda }_{\nu }^{\theta }\left(\rho ) with θ>0\theta \gt 0, 0<ν<10\lt \nu \lt 1, and (φ1,φ2)\left({\varphi }_{1},{\varphi }_{2}) satisfying certain requirements are bounded from LMp→,φ1α,V,{x0}L{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V,\left\{{x}_{0}\right\}} to LMq→,φ2α,V,{x0}L{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V,\left\{{x}_{0}\right\}}; from Mp→,φ1α,V{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V} to Mq→,φ2α,V{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V}, and from VMp→,φ1α,VV{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V} to VMq→,φ2α,VV{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V}, ∑i=1n1⁄pi−∑i=1n1⁄qi=β+ν{\sum }_{i=1}^{n}1/{p}_{i}-{\sum }_{i=1}^{n}1/{q}_{i}=\beta +\nu .
format Article
id doaj-art-17100b9953e844fd8a3e01f19713a20f
institution Kabale University
issn 2391-5455
language English
publishDate 2024-11-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj-art-17100b9953e844fd8a3e01f19713a20f2024-12-02T12:04:24ZengDe GruyterOpen Mathematics2391-54552024-11-0122111513410.1515/math-2024-0082Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spacesCelik Suleyman0Guliyev Vagif S.1Akbulut Ali2Social Sciences Vocational School Department of Banking, Finance and Insurance, Firat University, 23119 Elazig, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Kirsehir Ahi Evran University, 40100 Kirsehir, TurkeyDepartment of Mathematics, Faculty of Arts and Sciences, Kirsehir Ahi Evran University, 40100 Kirsehir, TurkeyLet L=−△+VL=-\bigtriangleup +V be the Schrödinger operator on Rn{{\mathbb{R}}}^{n}, where V≠0V\ne 0 is a non-negative function satisfying the reverse Hölder class RHq1R{H}_{{q}_{1}} for some q1>n⁄2{q}_{1}\gt n/2. △\bigtriangleup is the Laplacian on Rn{{\mathbb{R}}}^{n}. Assume that bb is a member of the Campanato space Λνθ(ρ){\Lambda }_{\nu }^{\theta }\left(\rho ) and that the fractional integral operator associated with LL is ℐβL{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}. We study the boundedness of the commutators [b,ℐβL]\left[b,{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}] with b∈Λνθ(ρ)b\in {\Lambda }_{\nu }^{\theta }\left(\rho ) on local generalized mixed Morrey spaces. Generalized mixed Morrey spaces Mp→,φα,V{M}_{\overrightarrow{p},\varphi }^{\alpha ,V}, vanishing generalized mixed Morrey spaces VMp→,φα,VV{M}_{\overrightarrow{p},\varphi }^{\alpha ,V}, and LMp→,φα,V,{x0}L{M}_{\overrightarrow{p},\varphi }^{\alpha ,V,\left\{{x}_{0}\right\}} are related to the Schrödinger operator, in that order. We demonstrate that the commutator operator [b,ℐβL]\left[b,{{\mathcal{ {\mathcal I} }}}_{\beta }^{L}] is satisfied when bb belongs to Λνθ(ρ){\Lambda }_{\nu }^{\theta }\left(\rho ) with θ>0\theta \gt 0, 0<ν<10\lt \nu \lt 1, and (φ1,φ2)\left({\varphi }_{1},{\varphi }_{2}) satisfying certain requirements are bounded from LMp→,φ1α,V,{x0}L{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V,\left\{{x}_{0}\right\}} to LMq→,φ2α,V,{x0}L{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V,\left\{{x}_{0}\right\}}; from Mp→,φ1α,V{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V} to Mq→,φ2α,V{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V}, and from VMp→,φ1α,VV{M}_{\overrightarrow{p},{\varphi }_{1}}^{\alpha ,V} to VMq→,φ2α,VV{M}_{\overrightarrow{q},{\varphi }_{2}}^{\alpha ,V}, ∑i=1n1⁄pi−∑i=1n1⁄qi=β+ν{\sum }_{i=1}^{n}1/{p}_{i}-{\sum }_{i=1}^{n}1/{q}_{i}=\beta +\nu .https://doi.org/10.1515/math-2024-0082schrödinger operatorfractional integralcommutatorlipschitz functionlocal generalized mixed morrey space42b3535j1047h50
spellingShingle Celik Suleyman
Guliyev Vagif S.
Akbulut Ali
Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
Open Mathematics
schrödinger operator
fractional integral
commutator
lipschitz function
local generalized mixed morrey space
42b35
35j10
47h50
title Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
title_full Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
title_fullStr Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
title_full_unstemmed Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
title_short Commutator of fractional integral with Lipschitz functions related to Schrödinger operator on local generalized mixed Morrey spaces
title_sort commutator of fractional integral with lipschitz functions related to schrodinger operator on local generalized mixed morrey spaces
topic schrödinger operator
fractional integral
commutator
lipschitz function
local generalized mixed morrey space
42b35
35j10
47h50
url https://doi.org/10.1515/math-2024-0082
work_keys_str_mv AT celiksuleyman commutatoroffractionalintegralwithlipschitzfunctionsrelatedtoschrodingeroperatoronlocalgeneralizedmixedmorreyspaces
AT guliyevvagifs commutatoroffractionalintegralwithlipschitzfunctionsrelatedtoschrodingeroperatoronlocalgeneralizedmixedmorreyspaces
AT akbulutali commutatoroffractionalintegralwithlipschitzfunctionsrelatedtoschrodingeroperatoronlocalgeneralizedmixedmorreyspaces