Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth

In this paper, we study the existence of multiple normalized solutions to the following Schrödinger–Poisson system with general nonlinearities: \begin{equation*} \begin{cases} -\varepsilon^2\Delta u+V(x)u+\phi u=f(u)+\lambda u & \hbox{in $\mathbb{R}^3$,} \\ -\varepsilon^2\Delta\phi=u^...

Full description

Saved in:
Bibliographic Details
Main Authors: Siwei Wei, Kaimin Teng
Format: Article
Language:English
Published: University of Szeged 2024-10-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11101
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533464011079680
author Siwei Wei
Kaimin Teng
author_facet Siwei Wei
Kaimin Teng
author_sort Siwei Wei
collection DOAJ
description In this paper, we study the existence of multiple normalized solutions to the following Schrödinger–Poisson system with general nonlinearities: \begin{equation*} \begin{cases} -\varepsilon^2\Delta u+V(x)u+\phi u=f(u)+\lambda u & \hbox{in $\mathbb{R}^3$,} \\ -\varepsilon^2\Delta\phi=u^2& \hbox{in $\mathbb{R}^3$,}\\ \int_{\mathbb{R}^3}|u|^2{\rm d}x=\varepsilon^3 a^2,\ \end{cases} \end{equation*} where $\varepsilon$, $a>0$, $\lambda\in\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier, $V(x):\mathbb{R}^3 \rightarrow [0,\infty)$ is a continuous function, and $f$ is a differentiable function satisfying $L^2$-subcritical growth. Through using the minimization techniques and the Lusternik–Schnirelmann category, we prove that the numbers of normalized solutions are related to the topology of the set where the potential $V(x)$ attains its minimum value.
format Article
id doaj-art-14bd9a871750475eb24fc054ee353885
institution Kabale University
issn 1417-3875
language English
publishDate 2024-10-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-14bd9a871750475eb24fc054ee3538852025-01-15T21:24:59ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-10-0120246112110.14232/ejqtde.2024.1.6111101Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growthSiwei Wei0Kaimin TengDepartment of Mathematics, Taiyuan University of Technology, Taiyuan, Shanxi, People's Republic of ChinaIn this paper, we study the existence of multiple normalized solutions to the following Schrödinger–Poisson system with general nonlinearities: \begin{equation*} \begin{cases} -\varepsilon^2\Delta u+V(x)u+\phi u=f(u)+\lambda u & \hbox{in $\mathbb{R}^3$,} \\ -\varepsilon^2\Delta\phi=u^2& \hbox{in $\mathbb{R}^3$,}\\ \int_{\mathbb{R}^3}|u|^2{\rm d}x=\varepsilon^3 a^2,\ \end{cases} \end{equation*} where $\varepsilon$, $a>0$, $\lambda\in\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier, $V(x):\mathbb{R}^3 \rightarrow [0,\infty)$ is a continuous function, and $f$ is a differentiable function satisfying $L^2$-subcritical growth. Through using the minimization techniques and the Lusternik–Schnirelmann category, we prove that the numbers of normalized solutions are related to the topology of the set where the potential $V(x)$ attains its minimum value.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11101schrödinger–poisson systemnormalized solutionslusternik–schnirelmann categoryvariational methods
spellingShingle Siwei Wei
Kaimin Teng
Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
Electronic Journal of Qualitative Theory of Differential Equations
schrödinger–poisson system
normalized solutions
lusternik–schnirelmann category
variational methods
title Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
title_full Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
title_fullStr Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
title_full_unstemmed Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
title_short Multiple normalized solutions to the nonlinear Schrödinger–Poisson system with the $L^2$-subcritical growth
title_sort multiple normalized solutions to the nonlinear schrodinger poisson system with the l 2 subcritical growth
topic schrödinger–poisson system
normalized solutions
lusternik–schnirelmann category
variational methods
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11101
work_keys_str_mv AT siweiwei multiplenormalizedsolutionstothenonlinearschrodingerpoissonsystemwiththel2subcriticalgrowth
AT kaiminteng multiplenormalizedsolutionstothenonlinearschrodingerpoissonsystemwiththel2subcriticalgrowth