Numerical Simulation of Earthquake Impacts on Marine Structures: A Comprehensive Review

Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical mod...

Full description

Saved in:
Bibliographic Details
Main Authors: Adel Kabi, Jersson X. Leon-Medina, Francesc Pozo
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/14/12/4039
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, DEM, FVM, and BEM, to assess the impacts of earthquakes on these structures. These methods provide cost-effective and reliable simulations, demonstrating strong alignment with experimental and theoretical data. However, challenges persist in areas such as computational efficiency and algorithmic limitations. Key findings highlight the ability of these models to accurately simulate primary forces during seismic events and secondary effects, such as wave-induced loads. Nonetheless, discrepancies remain, particularly in capturing energy dissipation processes in existing models. Future advancements in computational capabilities and techniques, such as high-resolution DNS for wave–structure interactions and improved near-field seismoacoustic modeling show potential for enhancing simulation accuracy. Furthermore, integrating laboratory and field data into unified frameworks will significantly improve the precision and practicality of these models, offering robust tools for predicting earthquake and wave impacts on marine environments.
ISSN:2075-5309