Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis

Abstract Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate colla...

Full description

Saved in:
Bibliographic Details
Main Authors: XinYue Wang, William J. Jowsey, Chen-Yi Cheung, Caitlan J. Smart, Hannah R. Klaus, Noon EJ Seeto, Natalie JE Waller, Michael T. Chrisp, Amanda L. Peterson, Boatema Ofori-Anyinam, Emily Strong, Brunda Nijagal, Nicholas P. West, Jason H. Yang, Peter C. Fineran, Gregory M. Cook, Simon A. Jackson, Matthew B. McNeil
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54072-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846165024263897088
author XinYue Wang
William J. Jowsey
Chen-Yi Cheung
Caitlan J. Smart
Hannah R. Klaus
Noon EJ Seeto
Natalie JE Waller
Michael T. Chrisp
Amanda L. Peterson
Boatema Ofori-Anyinam
Emily Strong
Brunda Nijagal
Nicholas P. West
Jason H. Yang
Peter C. Fineran
Gregory M. Cook
Simon A. Jackson
Matthew B. McNeil
author_facet XinYue Wang
William J. Jowsey
Chen-Yi Cheung
Caitlan J. Smart
Hannah R. Klaus
Noon EJ Seeto
Natalie JE Waller
Michael T. Chrisp
Amanda L. Peterson
Boatema Ofori-Anyinam
Emily Strong
Brunda Nijagal
Nicholas P. West
Jason H. Yang
Peter C. Fineran
Gregory M. Cook
Simon A. Jackson
Matthew B. McNeil
author_sort XinYue Wang
collection DOAJ
description Abstract Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant katG mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant katG mutant strain of M. tuberculosis. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant katG mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.
format Article
id doaj-art-138d2c76fe9b40538e5e763113a839ee
institution Kabale University
issn 2041-1723
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-138d2c76fe9b40538e5e763113a839ee2024-11-17T12:36:40ZengNature PortfolioNature Communications2041-17232024-11-0115111810.1038/s41467-024-54072-wWhole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosisXinYue Wang0William J. Jowsey1Chen-Yi Cheung2Caitlan J. Smart3Hannah R. Klaus4Noon EJ Seeto5Natalie JE Waller6Michael T. Chrisp7Amanda L. Peterson8Boatema Ofori-Anyinam9Emily Strong10Brunda Nijagal11Nicholas P. West12Jason H. Yang13Peter C. Fineran14Gregory M. Cook15Simon A. Jackson16Matthew B. McNeil17Department of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoMetabolomics Australia, Bio21 Institute, The University of MelbourneCenter for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical SchoolSchool of Chemistry and Molecular Biosciences, The University of QueenslandMetabolomics Australia, Bio21 Institute, The University of MelbourneSchool of Chemistry and Molecular Biosciences, The University of QueenslandCenter for Emerging and Re-emerging Pathogens, Public Health Research Institute, Rutgers New Jersey Medical SchoolDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoDepartment of Microbiology and Immunology, University of OtagoAbstract Drug-resistant strains of Mycobacterium tuberculosis are a major global health problem. Resistance to the front-line antibiotic isoniazid is often associated with mutations in the katG-encoded bifunctional catalase-peroxidase. We hypothesise that perturbed KatG activity would generate collateral vulnerabilities in isoniazid-resistant katG mutants, providing potential pathway targets to combat isoniazid resistance. Whole genome CRISPRi screens, transcriptomics, and metabolomics were used to generate a genome-wide map of cellular vulnerabilities in an isoniazid-resistant katG mutant strain of M. tuberculosis. Here, we show that metabolic and transcriptional remodelling compensates for the loss of KatG but in doing so generates vulnerabilities in respiration, ribosome biogenesis, and nucleotide and amino acid metabolism. Importantly, these vulnerabilities are more sensitive to inhibition in an isoniazid-resistant katG mutant and translated to clinical isolates. This work highlights how changes in the physiology of drug-resistant strains generates druggable vulnerabilities that can be exploited to improve clinical outcomes.https://doi.org/10.1038/s41467-024-54072-w
spellingShingle XinYue Wang
William J. Jowsey
Chen-Yi Cheung
Caitlan J. Smart
Hannah R. Klaus
Noon EJ Seeto
Natalie JE Waller
Michael T. Chrisp
Amanda L. Peterson
Boatema Ofori-Anyinam
Emily Strong
Brunda Nijagal
Nicholas P. West
Jason H. Yang
Peter C. Fineran
Gregory M. Cook
Simon A. Jackson
Matthew B. McNeil
Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
Nature Communications
title Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
title_full Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
title_fullStr Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
title_full_unstemmed Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
title_short Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis
title_sort whole genome crispri screening identifies druggable vulnerabilities in an isoniazid resistant strain of mycobacterium tuberculosis
url https://doi.org/10.1038/s41467-024-54072-w
work_keys_str_mv AT xinyuewang wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT williamjjowsey wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT chenyicheung wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT caitlanjsmart wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT hannahrklaus wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT noonejseeto wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT nataliejewaller wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT michaeltchrisp wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT amandalpeterson wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT boatemaoforianyinam wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT emilystrong wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT brundanijagal wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT nicholaspwest wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT jasonhyang wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT petercfineran wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT gregorymcook wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT simonajackson wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis
AT matthewbmcneil wholegenomecrispriscreeningidentifiesdruggablevulnerabilitiesinanisoniazidresistantstrainofmycobacteriumtuberculosis