ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA

CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinxia He, Fengchao Zhang, Baihai Wu, Wengong Yu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/14/1/9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial. Here, we performed a systematic pan-cancer analysis of the gene expression levels and clinical correlation of <i>CD24</i>. Our analysis revealed that <i>CD24</i> was highly expressed in breast tumor tissues and tumor cells, significantly shortening patient survival time. However, this correlation was not evident in other types of cancer. Additionally, a correlation analysis of CD24 levels with sialyltransferases (STs) revealed that ST8SIA6 is the key ST affecting CD24 sialylation. Further investigation demonstrated that ST8SIA6 directly modified CD24, promoting its localization to the cell membrane. Taken together, these findings elucidate, for the first time, the mechanisms by which ST8SIA6 regulates CD24 subcellular localization, providing new insights into the biological functions and applications of CD24.
ISSN:2073-4409