A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3

Abstract Rare earth‐based perovskites have become an attractive research interest in the field of cryogenic magnetic refrigerants due to their unique advantages in practical applications. The remarkable magnetocaloric effect (MCE) renders EuTiO3 a potential magnetic refrigerant in the liquid helium...

Full description

Saved in:
Bibliographic Details
Main Authors: Huicai Xie, Jiaxin Jiang, Lu Tian, Zhaojun Mo, Guodong Liu, Xinqiang Gao, Jun Shen, Yao Liu
Format: Article
Language:English
Published: Wiley-VCH 2024-11-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202400176
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846172570926186496
author Huicai Xie
Jiaxin Jiang
Lu Tian
Zhaojun Mo
Guodong Liu
Xinqiang Gao
Jun Shen
Yao Liu
author_facet Huicai Xie
Jiaxin Jiang
Lu Tian
Zhaojun Mo
Guodong Liu
Xinqiang Gao
Jun Shen
Yao Liu
author_sort Huicai Xie
collection DOAJ
description Abstract Rare earth‐based perovskites have become an attractive research interest in the field of cryogenic magnetic refrigerants due to their unique advantages in practical applications. The remarkable magnetocaloric effect (MCE) renders EuTiO3 a potential magnetic refrigerant in the liquid helium temperature range. More impressively, the tunability between antiferromagnetism (AFM) and ferromagnetism (FM) provides the feasibility of tailoring the magnetism and enhancing the magnetocaloric performance. In this study, the magnetism of EuTi0.75Al0.125Zr0.125O3 is investigated in depth through first‐principles calculations and experimental methods. Both theoretical calculations and experimental results reveal that it exhibits significant ferromagnetism due to the AFM‐FM magnetic transition promoted by the co‐substitution of Al and Zr. Lattice expansion and altered electronic interactions are responsible for the FM behavior, which leads to a significant enhancement of the MCE. With the field change of 0−1 T, the peak values of magnetic entropy change (−ΔSM), refrigerating capacity (RC), and adiabatic temperature change (ΔTad) reach 18.9 J kg−1 K−1, 77.7 J kg−1, and 7.4 K, respectively. More surprisingly, the values of maximum magnetic entropy change (−ΔSMmax) and maximum adiabatic temperature change ΔTadmax for EuTi0.75Al0.125Zr0.125O3 reach 11.4 J kg−1 K−1 and 3.7 K under the field change of 0−0.5 T, respectively. The remarkable magnetocaloric performance proves it to be a brilliant magnetic refrigerant operating near liquid helium temperature.
format Article
id doaj-art-113faef3309a4450950133c19a998b8c
institution Kabale University
issn 2199-160X
language English
publishDate 2024-11-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-113faef3309a4450950133c19a998b8c2024-11-09T18:01:02ZengWiley-VCHAdvanced Electronic Materials2199-160X2024-11-011011n/an/a10.1002/aelm.202400176A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3Huicai Xie0Jiaxin Jiang1Lu Tian2Zhaojun Mo3Guodong Liu4Xinqiang Gao5Jun Shen6Yao Liu7Key Laboratory of Rare Earths Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341119 ChinaKey Laboratory of Rare Earths Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341119 ChinaKey Laboratory of Rare Earths Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341119 ChinaKey Laboratory of Rare Earths Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341119 ChinaSchool of Materials Science and Engineering Hebei University of Technology Tianjin 300130 ChinaKey Laboratory of Rare Earths Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341119 ChinaSchool of Mechanical Engineering Beijing Institute of Technology Beijing 100081 ChinaKey Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan 250061 ChinaAbstract Rare earth‐based perovskites have become an attractive research interest in the field of cryogenic magnetic refrigerants due to their unique advantages in practical applications. The remarkable magnetocaloric effect (MCE) renders EuTiO3 a potential magnetic refrigerant in the liquid helium temperature range. More impressively, the tunability between antiferromagnetism (AFM) and ferromagnetism (FM) provides the feasibility of tailoring the magnetism and enhancing the magnetocaloric performance. In this study, the magnetism of EuTi0.75Al0.125Zr0.125O3 is investigated in depth through first‐principles calculations and experimental methods. Both theoretical calculations and experimental results reveal that it exhibits significant ferromagnetism due to the AFM‐FM magnetic transition promoted by the co‐substitution of Al and Zr. Lattice expansion and altered electronic interactions are responsible for the FM behavior, which leads to a significant enhancement of the MCE. With the field change of 0−1 T, the peak values of magnetic entropy change (−ΔSM), refrigerating capacity (RC), and adiabatic temperature change (ΔTad) reach 18.9 J kg−1 K−1, 77.7 J kg−1, and 7.4 K, respectively. More surprisingly, the values of maximum magnetic entropy change (−ΔSMmax) and maximum adiabatic temperature change ΔTadmax for EuTi0.75Al0.125Zr0.125O3 reach 11.4 J kg−1 K−1 and 3.7 K under the field change of 0−0.5 T, respectively. The remarkable magnetocaloric performance proves it to be a brilliant magnetic refrigerant operating near liquid helium temperature.https://doi.org/10.1002/aelm.202400176EuTi0.75Al0.125Zr0.125O3ferromagneticmagnetic refrigerantsmagnetocaloric effect
spellingShingle Huicai Xie
Jiaxin Jiang
Lu Tian
Zhaojun Mo
Guodong Liu
Xinqiang Gao
Jun Shen
Yao Liu
A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
Advanced Electronic Materials
EuTi0.75Al0.125Zr0.125O3
ferromagnetic
magnetic refrigerants
magnetocaloric effect
title A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
title_full A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
title_fullStr A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
title_full_unstemmed A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
title_short A Brilliant Magnetic Refrigerant Operating Near Liquid Helium Temperature: Enhanced Magnetocaloric Effect in Ferromagnetic EuTi0.75Al0.125Zr0.125O3
title_sort brilliant magnetic refrigerant operating near liquid helium temperature enhanced magnetocaloric effect in ferromagnetic euti0 75al0 125zr0 125o3
topic EuTi0.75Al0.125Zr0.125O3
ferromagnetic
magnetic refrigerants
magnetocaloric effect
url https://doi.org/10.1002/aelm.202400176
work_keys_str_mv AT huicaixie abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT jiaxinjiang abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT lutian abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT zhaojunmo abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT guodongliu abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT xinqianggao abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT junshen abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT yaoliu abrilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT huicaixie brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT jiaxinjiang brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT lutian brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT zhaojunmo brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT guodongliu brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT xinqianggao brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT junshen brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3
AT yaoliu brilliantmagneticrefrigerantoperatingnearliquidheliumtemperatureenhancedmagnetocaloriceffectinferromagneticeuti075al0125zr0125o3