Vulnerability Analysis of the China Railway Express Network Under Emergency Scenarios

In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially triggering...

Full description

Saved in:
Bibliographic Details
Main Authors: Huiyong Li, Wenlu Zhou, Laijun Zhao, Lixin Zhou, Pingle Yang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8205
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the context of globalization and the Belt and Road Initiative, maintaining the stability and security of the China Railway Express network (CRN) is critical for international logistics operations. However, unexpected events can lead to node and edge failures within the CRN, potentially triggering cascading failures that critically compromise network performance. This study introduces a Coupled Map Lattice model that incorporates cargo flow dynamics, distributing cargo based on distance and the residual capacity of neighboring nodes. We analyze cascading failures in the CRN under three scenarios, isolated node failure, isolated edge disruption, and simultaneous node and edge failure, to assess the network’s vulnerability during emergencies. Our findings show that deliberate attacks targeting cities with high node strength result in more significant damage than attacks on cities with a high node degree or betweenness. Additionally, when edges are disrupted by unexpected events, the impact of edge removals on cascading failures depends on their strategic position and connections within the network, not just their betweenness and weight. The study further reveals that removing collinear edges can effectively slow the propagation of cascading failures in response to deliberate attacks. Furthermore, a single-factor cargo flow allocation method significantly enhances the network’s resilience against edge failures compared to node failures. These insights provide practical guidance and strategic support for the CR Express in mitigating the effects of both unforeseen events and intentional attacks.
ISSN:2076-3417