Analysis of magnetic field-induced breakup of ferrofluid droplets in a symmetric Y-junction microchannel

Abstract This research focuses on the analysis of the breakup of ferrofluid droplets in a symmetric microchannel with a Y-junction microchannel, utilizing computational methods. The study proposes an innovative strategy to enhance the breakup phenomenon by introducing a magnetic field within the bra...

Full description

Saved in:
Bibliographic Details
Main Authors: Parviz Naseri, Seyyed Masoud Seyyedi, Mehdi Hashemi-Tilehnoee, Azadeh Sadat Naeimi
Format: Article
Language:English
Published: Nature Portfolio 2024-10-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-74805-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This research focuses on the analysis of the breakup of ferrofluid droplets in a symmetric microchannel with a Y-junction microchannel, utilizing computational methods. The study proposes an innovative strategy to enhance the breakup phenomenon by introducing a magnetic field within the branches of the Y-junction microchannel. To verify the obtained results, a comprehensive comparison is conducted, incorporating previous numerical and experimental investigations available in the literature. The outcomes of this comparison demonstrate a significant concurrence between the current findings and the prior studies. The results unequivocally elucidate that the presence of a magnetic field accelerates the fragmentation of the parent droplet in comparison to scenarios without a magnetic field. Furthermore, it is established that the duration required for droplet breakup decreases as the magnetic Bond number increases. Achieved results indicates $$\:{\text{t}}_{breakup}^{*}$$ decreases about 3% and 1.5% for L*=3 and L*=4, respectively. It is worth highlighting that this trend is particularly accentuated in the case of smaller non-dimensional lengths, specifically L∗=3.0.
ISSN:2045-2322