Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite

This study presents a comprehensive investigation into the synthesis, characterization, and photocatalytic performance of NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposites for solar hydrogen production. Through a carefully optimized sol–gel method, we synthesized a heterojunct...

Full description

Saved in:
Bibliographic Details
Main Authors: Alberto Bacilio Quispe Cohaila, Elisban Juani Sacari Sacari, Wilson Orlando Lanchipa Ramos, Hugo Benito Canahua Loza, Rocío María Tamayo Calderón, Jesús Plácido Medina Salas, Francisco Gamarra Gómez, Ramalinga Viswanathan Mangalaraja, Saravanan Rajendran
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/23/5830
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846124264410841088
author Alberto Bacilio Quispe Cohaila
Elisban Juani Sacari Sacari
Wilson Orlando Lanchipa Ramos
Hugo Benito Canahua Loza
Rocío María Tamayo Calderón
Jesús Plácido Medina Salas
Francisco Gamarra Gómez
Ramalinga Viswanathan Mangalaraja
Saravanan Rajendran
author_facet Alberto Bacilio Quispe Cohaila
Elisban Juani Sacari Sacari
Wilson Orlando Lanchipa Ramos
Hugo Benito Canahua Loza
Rocío María Tamayo Calderón
Jesús Plácido Medina Salas
Francisco Gamarra Gómez
Ramalinga Viswanathan Mangalaraja
Saravanan Rajendran
author_sort Alberto Bacilio Quispe Cohaila
collection DOAJ
description This study presents a comprehensive investigation into the synthesis, characterization, and photocatalytic performance of NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposites for solar hydrogen production. Through a carefully optimized sol–gel method, we synthesized a heterojunction photocatalyst comprising 99.2% NiTiO<sub>3</sub> and 0.8% anatase TiO<sub>2</sub>. Extensive characterization using XRD, Raman spectroscopy, FTIR, UV–visible spectroscopy, photoluminescence spectroscopy, and TEM revealed the formation of an intimate heterojunction between rhombohedral NiTiO<sub>3</sub> and anatase TiO<sub>2</sub>. The nanocomposite demonstrated remarkable improvements in optical and electronic properties, including enhanced UV–visible light absorption and an 85% reduction in charge carrier recombination compared to pristine NiTiO<sub>3</sub>. Crystallite size analysis showed a reduction from 53.46 nm to 46.35 nm upon TiO<sub>2</sub> incorporation, leading to increased surface area and active sites. High-resolution TEM confirmed the formation of well-defined interfaces between NiTiO<sub>3</sub> and TiO<sub>2</sub>, with lattice fringes of 0.349 nm and 0.249 nm corresponding to their respective crystallographic planes. Under UV irradiation, the NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposite exhibited superior photocatalytic performance, achieving a hydrogen evolution rate of 9.74 μmol min−1, representing a 17.1% improvement over pristine NiTiO<sub>3</sub>. This enhancement is attributed to the synergistic effects of improved light absorption, reduced charge recombination, and efficient charge separation at the heterojunction interface. Our findings demonstrate the potential of NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposites as efficient photocatalysts for solar hydrogen production and contribute to the development of advanced materials for renewable energy applications.
format Article
id doaj-art-0feb8c37d0c24300aa8f9138ee12dc09
institution Kabale University
issn 1996-1073
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj-art-0feb8c37d0c24300aa8f9138ee12dc092024-12-13T16:25:03ZengMDPI AGEnergies1996-10732024-11-011723583010.3390/en17235830Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ CompositeAlberto Bacilio Quispe Cohaila0Elisban Juani Sacari Sacari1Wilson Orlando Lanchipa Ramos2Hugo Benito Canahua Loza3Rocío María Tamayo Calderón4Jesús Plácido Medina Salas5Francisco Gamarra Gómez6Ramalinga Viswanathan Mangalaraja7Saravanan Rajendran8Laboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Escuela Profesional de Metalurgia y Materiales, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, PeruFacultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, PeruGrupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, PeruLaboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Escuela Profesional de Metalurgia y Materiales, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, PeruCentro de Microscopia Electrónica, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín, Arequipa 04001, PeruGrupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, PeruGrupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, PeruFaculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago 7941169, ChileInstituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, ChileThis study presents a comprehensive investigation into the synthesis, characterization, and photocatalytic performance of NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposites for solar hydrogen production. Through a carefully optimized sol–gel method, we synthesized a heterojunction photocatalyst comprising 99.2% NiTiO<sub>3</sub> and 0.8% anatase TiO<sub>2</sub>. Extensive characterization using XRD, Raman spectroscopy, FTIR, UV–visible spectroscopy, photoluminescence spectroscopy, and TEM revealed the formation of an intimate heterojunction between rhombohedral NiTiO<sub>3</sub> and anatase TiO<sub>2</sub>. The nanocomposite demonstrated remarkable improvements in optical and electronic properties, including enhanced UV–visible light absorption and an 85% reduction in charge carrier recombination compared to pristine NiTiO<sub>3</sub>. Crystallite size analysis showed a reduction from 53.46 nm to 46.35 nm upon TiO<sub>2</sub> incorporation, leading to increased surface area and active sites. High-resolution TEM confirmed the formation of well-defined interfaces between NiTiO<sub>3</sub> and TiO<sub>2</sub>, with lattice fringes of 0.349 nm and 0.249 nm corresponding to their respective crystallographic planes. Under UV irradiation, the NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposite exhibited superior photocatalytic performance, achieving a hydrogen evolution rate of 9.74 μmol min−1, representing a 17.1% improvement over pristine NiTiO<sub>3</sub>. This enhancement is attributed to the synergistic effects of improved light absorption, reduced charge recombination, and efficient charge separation at the heterojunction interface. Our findings demonstrate the potential of NiTiO<sub>3</sub>/TiO<sub>2</sub> nanocomposites as efficient photocatalysts for solar hydrogen production and contribute to the development of advanced materials for renewable energy applications.https://www.mdpi.com/1996-1073/17/23/5830NiTiO<sub>3</sub>TiO<sub>2</sub>sol–gelnano-compositephotocatalytic hydrogen production
spellingShingle Alberto Bacilio Quispe Cohaila
Elisban Juani Sacari Sacari
Wilson Orlando Lanchipa Ramos
Hugo Benito Canahua Loza
Rocío María Tamayo Calderón
Jesús Plácido Medina Salas
Francisco Gamarra Gómez
Ramalinga Viswanathan Mangalaraja
Saravanan Rajendran
Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
Energies
NiTiO<sub>3</sub>
TiO<sub>2</sub>
sol–gel
nano-composite
photocatalytic hydrogen production
title Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
title_full Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
title_fullStr Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
title_full_unstemmed Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
title_short Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite
title_sort improving photocatalytic hydrogen production with sol gel prepared nitio₃ tio₂ composite
topic NiTiO<sub>3</sub>
TiO<sub>2</sub>
sol–gel
nano-composite
photocatalytic hydrogen production
url https://www.mdpi.com/1996-1073/17/23/5830
work_keys_str_mv AT albertobacilioquispecohaila improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT elisbanjuanisacarisacari improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT wilsonorlandolanchiparamos improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT hugobenitocanahualoza improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT rociomariatamayocalderon improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT jesusplacidomedinasalas improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT franciscogamarragomez improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT ramalingaviswanathanmangalaraja improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite
AT saravananrajendran improvingphotocatalytichydrogenproductionwithsolgelpreparednitio3tio2composite