AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review

Augmented reality (AR) has gained significant attention in recent years for its applications in training and assistance in various industrial settings. Yet, a less understood question is: How can AR systems, coupled with artificial intelligence (AI) capabilities, adaptively tailor instructions and f...

Full description

Saved in:
Bibliographic Details
Main Authors: Steven Yoo, Sakib Reza, Hamid Tarashiyoun, Akhil Ajikumar, Mohsen Moghaddam
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10795144/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846113842455642112
author Steven Yoo
Sakib Reza
Hamid Tarashiyoun
Akhil Ajikumar
Mohsen Moghaddam
author_facet Steven Yoo
Sakib Reza
Hamid Tarashiyoun
Akhil Ajikumar
Mohsen Moghaddam
author_sort Steven Yoo
collection DOAJ
description Augmented reality (AR) has gained significant attention in recent years for its applications in training and assistance in various industrial settings. Yet, a less understood question is: How can AR systems, coupled with artificial intelligence (AI) capabilities, adaptively tailor instructions and feedback interventions to the specific needs of users, their cognitive states, and levels of expertise during task execution? This paper addresses this question by conducting a systematic review that delves into three specific research areas: the state-of-the-art of AR-based systems for industrial applications in terms of features and training/assistance capabilities, the existing gaps in transforming AR into an “intelligent companion” that adapts to both the work context and the user’s needs, and how these sources of multimodal data captured by AR headsets, wearables, and IoT sensors can be harnessed to interpret, predict, and guide task performance and learning through AR. To this end, this paper synthesizes recent studies in the field of industrial AR, summarizing their main findings, contributions, and associated limitations when integrating AI capabilities into AR. The results suggest that AR can effectively tackle key industry challenges associated with training and upskilling, process improvement, and error prevention. However, limitations remain in integrating multimodal data-driven capabilities into AR to effectively tailor AR guides to how individual workers learn and perform complex industrial tasks. The paper concludes with a framework as well as several research directions and examples to realize intelligent AR systems enhanced with advanced AI capabilities for activity understanding, user modeling, and interventions, serving as adaptive and personalized companions for industrial workers.
format Article
id doaj-art-0fb6538872404876a919670d83422b78
institution Kabale University
issn 2169-3536
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj-art-0fb6538872404876a919670d83422b782024-12-21T00:01:34ZengIEEEIEEE Access2169-35362024-01-011219180819182710.1109/ACCESS.2024.351653610795144AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic ReviewSteven Yoo0https://orcid.org/0000-0002-5054-9873Sakib Reza1https://orcid.org/0000-0001-8491-0316Hamid Tarashiyoun2https://orcid.org/0009-0002-8848-4347Akhil Ajikumar3Mohsen Moghaddam4https://orcid.org/0000-0002-3201-6010H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USADepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USADepartment of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USAH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USAH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USAAugmented reality (AR) has gained significant attention in recent years for its applications in training and assistance in various industrial settings. Yet, a less understood question is: How can AR systems, coupled with artificial intelligence (AI) capabilities, adaptively tailor instructions and feedback interventions to the specific needs of users, their cognitive states, and levels of expertise during task execution? This paper addresses this question by conducting a systematic review that delves into three specific research areas: the state-of-the-art of AR-based systems for industrial applications in terms of features and training/assistance capabilities, the existing gaps in transforming AR into an “intelligent companion” that adapts to both the work context and the user’s needs, and how these sources of multimodal data captured by AR headsets, wearables, and IoT sensors can be harnessed to interpret, predict, and guide task performance and learning through AR. To this end, this paper synthesizes recent studies in the field of industrial AR, summarizing their main findings, contributions, and associated limitations when integrating AI capabilities into AR. The results suggest that AR can effectively tackle key industry challenges associated with training and upskilling, process improvement, and error prevention. However, limitations remain in integrating multimodal data-driven capabilities into AR to effectively tailor AR guides to how individual workers learn and perform complex industrial tasks. The paper concludes with a framework as well as several research directions and examples to realize intelligent AR systems enhanced with advanced AI capabilities for activity understanding, user modeling, and interventions, serving as adaptive and personalized companions for industrial workers.https://ieeexplore.ieee.org/document/10795144/Augmented realityartificial intelligenceindustrial training and assistanceactivity understandinguser modelingmultimodal data
spellingShingle Steven Yoo
Sakib Reza
Hamid Tarashiyoun
Akhil Ajikumar
Mohsen Moghaddam
AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
IEEE Access
Augmented reality
artificial intelligence
industrial training and assistance
activity understanding
user modeling
multimodal data
title AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
title_full AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
title_fullStr AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
title_full_unstemmed AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
title_short AI-Integrated AR as an Intelligent Companion for Industrial Workers: A Systematic Review
title_sort ai integrated ar as an intelligent companion for industrial workers a systematic review
topic Augmented reality
artificial intelligence
industrial training and assistance
activity understanding
user modeling
multimodal data
url https://ieeexplore.ieee.org/document/10795144/
work_keys_str_mv AT stevenyoo aiintegratedarasanintelligentcompanionforindustrialworkersasystematicreview
AT sakibreza aiintegratedarasanintelligentcompanionforindustrialworkersasystematicreview
AT hamidtarashiyoun aiintegratedarasanintelligentcompanionforindustrialworkersasystematicreview
AT akhilajikumar aiintegratedarasanintelligentcompanionforindustrialworkersasystematicreview
AT mohsenmoghaddam aiintegratedarasanintelligentcompanionforindustrialworkersasystematicreview