Toward Single-Shot Real-Time Spectroscopy of Dynamic Materials via White-Light and Supercontinuum Light Sources

In conventional camera or monochromator-based spectroscopy, different wavelengths, spanning from short ultraviolet region to long infrared region, are calculated under steady-state conditions due to the temporally multiplexed nature of conventional CMOS/CCD-equipped spectrometers, which limit the re...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhanibek Bolatbek, Imad Agha
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/11/12/1119
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In conventional camera or monochromator-based spectroscopy, different wavelengths, spanning from short ultraviolet region to long infrared region, are calculated under steady-state conditions due to the temporally multiplexed nature of conventional CMOS/CCD-equipped spectrometers, which limit the refresh rates to the order of milliseconds for most tools available on the market. These refresh rates might not be suitable for most temporally dynamic effects that govern the behavior of disparate effects, such as phase transition in phase-change materials, conformal changes in molecules, and microbial community evolution, among others. Pump-probe methods are often presented as a solution to the capture speed limitation, but in themselves are not applicable universally and are not truly “real-time”. In this work, we present an evolution to the conventional spectrometers, increasing its speed by over 4 orders of magnitude while maintaining reasonable spectral resolution. We additionally present a path that combines our technique with supercontinuum light sources for even more ambitious future applications.
ISSN:2304-6732